Xultophy 100/3.6

Xultophy 100/3.6 Medicine

Overdose

Limited data are available with regard to overdose of Xultophy 100/3.6.

Hypoglycaemia may develop if a patient is dosed with more Xultophy 100/3.6 than required:

- Mild hypoglycaemic episodes can be treated by oral administration of glucose or other products containing sugar. It is therefore recommended that the patient always carries sugar-containing products

- Severe hypoglycaemic episodes, where the patient is not able to treat himself, can be treated with glucagon (0.5 to 1 mg) given intramuscularly or subcutaneously by a trained person, or with glucose given intravenously by a healthcare professional. Glucose must be given intravenously if the patient does not respond to glucagon within 10 to 15 minutes. Upon regaining consciousness, administration of oral carbohydrates is recommended for the patient in order to prevent a relapse.

Incompatibilities

Substances added to Xultophy 100/3.6 may cause degradation of the active substances.

Xultophy 100/3.6 must not be added to infusion fluids.

This medicinal product must not be mixed with other medicinal products.

Pharmaceutical form

Injection

Undesirable effects

Summary of the safety profile

The Xultophy 100/3.6 clinical development programme included approximately 1,900 patients treated with Xultophy 100/3.6.

The most frequently reported adverse reactions during treatment with Xultophy 100/3.6 were hypoglycaemia and gastrointestinal adverse reactions (see section 'Description of selected adverse reactions' below).

Tabulated list of adverse reactions

Adverse reactions associated with Xultophy 100/3.6 are given below, listed by system organ class and frequency. Frequency categories are defined as: Very common (>1/10); common (>1/100 to <1/10); uncommon (>1/1,000 to <1/100); rare (>1/10,000 to <1/1,000); very rare (<1/10,000) and not known (cannot be estimated from the available data).

Table 1 Adverse reactions reported in phase 3 controlled studies

MedDRA System organ class

Frequency

Adverse Drug Reaction

Immune system disorders

Uncommon

Urticaria

Uncommon

Hypersensitivity

Unknown

Anaphylactic reaction

Metabolism and nutrition disorders

Very common

Hypoglycaemia

Common

Decreased appetite

Uncommon

Dehydration

Gastrointestinal disorders

Common

Nausea, diarrhoea, vomiting, constipation, dyspepsia, gastritis, abdominal pain, gastroesophageal reflux disease, abdominal distension

Uncommon

Eructation, flatulence

Unknown

Pancreatitis (including necrotising pancreatitis )

Hepatobiliary disorders

Uncommon

Cholelithiasis

Uncommon

Cholecystitis

Skin and subcutaneous tissue disorders

Uncommon

Rash

Uncommon

Pruritus

Uncommon

Lipodystrophy acquired

General disorders and administration site condition

Common

Injection site reaction

Unknown

Peripheral oedema

Investigation

Common

Increased lipase

Common

Increased amylase

Uncommon

Increased heart rate

Description of selected adverse reactions

Hypoglycaemia

Hypoglycaemia may occur if the Xultophy 100/3.6 dose is higher than required.

Allergic reactions

Allergic reactions (manifested with signs and symptoms such as urticaria (0.3% of patients treated with Xultophy 100/3.6), rash (0.7%), pruritus (0.5%) and/or swelling of the face (0.2%)) have been reported for Xultophy 100/3.6. Few cases of anaphylactic reactions with additional symptoms such as hypotension, palpitations, dyspnoea, and oedema have been reported during marketed use of liraglutide. Anaphylactic reactions may potentially be life threatening.

Gastrointestinal adverse reactions

Gastrointestinal adverse reactions may occur more frequently at the beginning of Xultophy 100/3.6 therapy and usually diminish within a few days or weeks on continued treatment. Nausea was reported in 7.8% of patients and was transient in nature for most patients. The proportion of patients reporting nausea per week at any point during treatment was below 4%. Diarrhoea and vomiting were reported in 7.5% and 3.9% of patients, respectively. The frequency of nausea and diarrhoea was 'Common' for Xultophy 100/3.6 and 'Very common' for liraglutide. In addition, constipation, dyspepsia, gastritis, abdominal pain, gastroesophageal reflux disease, abdominal distension, eructation, flatulence and decreased appetite have been reported in up to 3.6% of patients treated with Xultophy 100/3.6.

Injection site reactions

Injection site reactions (including injection site haematoma, pain, haemmorrhage, erythema, nodules, swelling, discolouration, pruritus, warmth and injection site mass) have been reported in 2.6% of patients treated with Xultophy 100/3.6. These reactions were usually mild and transitory and they normally disappear during continued treatment.

Lipodystrophy

Lipodystrophy (including lipohypertrophy, lipoatrophy) may occur at the injection site. Continuous rotation of the injection site within the particular injection area may help to reduce the risk of developing these reactions.

Increased heart rate

Mean increase in heart rate from baseline of 2 to 3 beats per minute has been observed in clinical trials with Xultophy 100/3.6. The long-term clinical effects of the increase in heart rate have not been established.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via

United Kingdom

Yellow Card Scheme

Website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store

Ireland

HPRA Pharmacovigilance

Earlsfort Terrace

IRL - Dublin 2

Tel: +353 1 6764971

Fax: +353 1 6762517

Website: www.hpra.ie

e-mail: [email protected]

Preclinical safety data

The non-clinical development programme for insulin degludec/liraglutide included pivotal combination toxicity studies of up to 90 days duration in a single relevant species (Wistar rats) to support the clinical development programme. Local tolerance was assessed in rabbits and pigs.

Non-clinical safety data revealed no safety concern for humans based on repeated dose toxicity studies.

The local tissue reactions in the two studies in rabbits and pigs, respectively, were limited to mild inflammatory reactions.

No studies have been conducted with the insulin degludec/liraglutide combination to evaluate carcinogenesis, mutagenesis or impairment of fertility. The following data are based upon studies with insulin degludec and liraglutide individually.

Insulin degludec

Non-clinical data reveal no safety concern for humans based on studies of safety pharmacology, repeated dose toxicity, carcinogenic potential, and toxicity to reproduction.

The ratio of mitogenic relative to metabolic potency for insulin degludec is unchanged compared to human insulin.

Liraglutide

Non-clinical data reveal no special hazards for human based on conventional studies of safety pharmacology, repeat-dose toxicity, or genotoxicity. Non-lethal thyroid C-cell tumours were seen in 2-year carcinogenicity studies in rats and mice. In rats, a no observed adverse effect level (NOAEL) was not observed. These tumours were not seen in monkeys treated for 20 months. These findings in rodents are caused by a non-genotoxic, specific GLP-1 receptor-mediated mechanism to which rodents are particularly sensitive. The relevance for humans is likely to be low but cannot be completely excluded. No other treatment-related tumours have been found.

Animal studies did not indicate direct harmful effects with respect to fertility but slightly increased early embryonic deaths at the highest dose. Dosing with liraglutide during mid-gestation caused a reduction in maternal weight and foetal growth with equivocal effects on ribs in rats and skeletal variation in the rabbit. Neonatal growth was reduced in rats while exposed to liraglutide, and persisted in the post-weaning period in the high dose group. It is unknown whether the reduced pup growth is caused by reduced pup milk intake due to a direct GLP-1 effect or reduced maternal milk production due to decreased caloric intake.

Therapeutic indications

Xultophy 100/3.6 is indicated for the treatment of adults with type 2 diabetes mellitus to improve glycaemic control in combination with oral glucose-lowering medicinal products when these alone or combined with a GLP-1 receptor agonist or basal insulin do not provide adequate glycaemic control (see sections 4.4 and 5.1 for available data on the different combinations).

Pharmacotherapeutic group

Drugs used in diabetes. Insulins and analogues for injection, long-acting. ATC code: A10AE56

Pharmacodynamic properties

Pharmacotherapeutic group: Drugs used in diabetes. Insulins and analogues for injection, long-acting. ATC code: A10AE56

Mechanism of action

Xultophy 100/3.6 is a combination product consisting of insulin degludec and liraglutide having complementary mechanisms of action to improve glycaemic control.

Insulin degludec is a basal insulin that forms soluble multi-hexamers upon subcutaneous injection, resulting in a depot from which insulin degludec is continuously and slowly absorbed into the circulation leading to a flat and stable glucose-lowering effect of insulin degludec with a low day-to-day variability in insulin action.

Insulin degludec binds specifically to the human insulin receptor and results in the same pharmacological effects as human insulin.

The blood glucose-lowering effect of insulin degludec is due to the facilitated uptake of glucose following the binding of insulin to receptors on muscle and fat cells and to the simultaneous inhibition of glucose output from the liver.

Liraglutide is a Glucagon-Like Peptide-1 (GLP-1) analogue with 97% sequence homology to human GLP-1 that binds to and activates the GLP-1 receptor (GLP-1R). Following subcutaneous administration, the protracted action profile is based on three mechanisms: self-association, which results in slow absorption; binding to albumin; and higher enzymatic stability towards the dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase (NEP) enzymes, resulting in a long plasma half-life.

Liraglutide action is mediated via a specific interaction with GLP-1 receptors and improves glycaemic control by lowering fasting and postprandial blood glucose. Liraglutide stimulates insulin secretion and lowers inappropriately high glucagon secretion in a glucose-dependent manner. Thus, when blood glucose is high, insulin secretion is stimulated and glucagon secretion is inhibited. Conversely, during hypoglycaemia liraglutide diminishes insulin secretion and does not impair glucagon secretion. The mechanism of blood glucose-lowering also involves a minor delay in gastric emptying.

Liraglutide reduces body weight and body fat mass through mechanisms involving reduced hunger and lowered energy intake.

GLP-1 is a physiological regulator of appetite and food intake, but the exact mechanism of action is not entirely clear. In animal studies, peripheral administration of liraglutide led to uptake in specific brain regions involved in regulation of appetite, where liraglutide, via specific activation of the GLP-1R, increased key satiety and decreased key hunger signals, thereby leading to lower body weight.

Pharmacodynamic effects

Xultophy 100/3.6 has a stable pharmacodynamic profile with a duration of action reflecting the combination of the individual action profiles of insulin degludec and liraglutide that allows for administration of Xultophy 100/3.6 once daily at any time of the day with or without meals. Xultophy 100/3.6 improves glycaemic control through the sustained lowering of fasting plasma glucose levels and postprandial glucose levels after all meals.

Postprandial glucose reduction was confirmed in a 4 hour standardised meal test substudy in patients uncontrolled on metformin alone or in combination with pioglitazone. Xultophy 100/3.6 decreased the postprandial plasma glucose excursion (mean over 4 hours) significantly more than insulin degludec. The results were similar for Xultophy 100/3.6 and liraglutide.

Clinical efficacy and safety

Add-on to oral glucose-lowering medicinal products

Add-on to metformin alone or in combination with pioglitazone

The efficacy and safety of Xultophy 100/3.6 compared to insulin degludec and liraglutide, all once daily, were studied in a 26-week randomised, controlled, open-label, treat-to-target trial in patients with type 2 diabetes mellitus with a 26-week extension. The starting dose of Xultophy 100/3.6 and insulin degludec was 10 dose steps (10 units insulin degludec and 0.36 mg liraglutide) and 10 units, respectively, and the dose was titrated twice weekly according to Table 2 below.

Patients in the liraglutide arm followed a fixed dose escalation scheme with a starting dose of 0.6 mg and a dose increase of 0.6 mg weekly until the maintenance dose of 1.8 mg was reached. The maximum dose of Xultophy 100/3.6 was 50 dose steps, while there was no maximum dose in the insulin degludec arm.

Table 2 Titration of Xultophy 100/3.6 and basal insulin

Pre-breakfast plasma glucose*

Dose adjustment

mmol/L

mg/dL

Xultophy 100/3.6 (dose steps)

Basal insulin (units)

< 4.0

<72

-2

-2

4.0-5.0

72-90

0

0

>5.0

>90

+2

+2

*Self-measured plasma glucose

The key results of the trial are listed in Figure 1 and Table 3.

60.4% of patients treated with Xultophy 100/3.6 reached a target of HbA1c <7% without confirmed hypoglycaemic episodes after 26 weeks of treatment. The proportion was significantly larger than observed with insulin degludec (40.9%, odds ratio 2.28, p<0.0001) and similar to that observed with liraglutide (57.7%, odds ratio 1.13, p=0.3184).

Rates of confirmed hypoglycaemia were lower with Xultophy 100/3.6 than with insulin degludec irrespective of the glycaemic control, see Figure 1.

IDegLira=Xultophy 100/3.6, IDeg=insulin degludec, Lira=liraglutide, obs. rate=observed rate, PYE=patient year of exposure

Figure 1 Mean HbA1c (%) by treatment week (left) and rate of confirmed hypoglycaemia per patient year of exposure vs mean HbA1c (%) (right) in patients with type 2 diabetes mellitus inadequately controlled on metformin alone or in combination with pioglitazone

The rate per patient year of exposure (percentage of patients) of severe hypoglycaemia defined as an episode requiring assistance of another person was 0.01 (2 patients out of 825) for Xultophy 100/3.6, 0.01 (2 patients out of 412) for insulin degludec and 0.00 (0 patients out of 412) for liraglutide. The rate of nocturnal hypoglycaemic events was similar with Xultophy 100/3.6 and insulin degludec treatment.

Patients treated with Xultophy 100/3.6 overall experienced less gastrointestinal side effects than patients treated with liraglutide. This might be due to the slower increase in the dose of the liraglutide component during treatment initiation when using Xultophy 100/3.6 as compared to using liraglutide alone.

Long-term (52-week) data in patients inadequately controlled on metformin alone or in combination with pioglitazone

The efficacy and safety of Xultophy 100/3.6 were sustained up to 52 weeks of treatment. The reduction in HbA1c from baseline to 52 weeks was 1.84% with Xultophy 100/3.6 with an estimated treatment difference of -0.65% compared to liraglutide (p<0.0001) and -0.46% compared to insulin degludec (p<0.0001). Body weight was reduced by 0.4 kg with an estimated treatment difference between Xultophy 100/3.6 and insulin degludec of -2.80 kg (p<0.0001), and the rate of confirmed hypoglycaemia remained 1.8 events per patient year of exposure maintaining a significant reduction in overall risk of confirmed hypoglycaemia compared to insulin degludec.

Add-on to sulfonylurea alone or in combination with metformin

The efficacy and safety of Xultophy 100/3.6 as add-on to sulfonylurea alone or in combination with metformin were studied in a 26-week randomised, placebo-controlled, double-blind, treat-to-target trial in 435 patients with type 2 diabetes mellitus of which 289 were treated with Xultophy 100/3.6. The starting dose of Xultophy 100/3.6 was 10 dose steps (10 units insulin degludec and 0.36 mg liraglutide), and the dose was titrated twice weekly. Titration was performed as outlined in Table 2 though with a titration target of 4-6 mmol/L.

The key results of the trial are listed in Figure 2 and Table 3.

IDegLira=Xultophy 100/3.6

Figure 2 Mean HbA1c (%) by treatment week in patients with type 2 diabetes mellitus inadequately controlled on sulfonylurea alone or in combination with metformin

The rate per patient year of exposure (percentage of patients) of severe hypoglycaemia was 0.02 (2 patients out of 288) for Xultophy 100/3.6 and 0.00 (0 patients out of 146) for placebo.

Table 3 Results from 26-week trials with Xultophy 100/3.6 in patients with type 2 diabetes mellitus either inadequately controlled on metformin alone or in combination with pioglitazone (left) or inadequately controlled on sulfonylurea alone or in combination with metformin (right)

Previous treatment with metformin±pioglitazone

Previous treatment with sulfonylurea ± metformin

Xultophy 100/3.6

Insulin degludec

Liraglutide

Xultophy 100/3.6

Placebo

N

833

413

414

289

146

HbA1c (%)

Baseline→End of trial

Mean change

Estimated difference

8.3→6.4

-1.91

8.3→6.9

-1.44

-0.47AB[-0.58; -0.36]

8.3→7.0

-1.28

-0.64AB[-0.75; -0.53]

7.9→6.4

-1.45

7.9→7.4

-0.46

-1.02AB[-1.18; -0.87]

Patients (%) achieving HbA1c <7%

All patients

Estimated odds ratio

80.6

65.1

2.38B [1.78; 3.18]

60.4

3.26B [2.45; 4.33]

79.2

28.8

11.95B [7.22; 19.77]

Patients (%) achieving HbA1c ≤6.5%

All patients

Estimated odds ratio

69.7

47.5

2.82B [2.17; 3.67]

41.1

3.98B [3.05; 5.18]

64.0

12.3

16.36B [9.05; 29.56]

Rate of confirmed hypoglycaemia* per patient year of exposure (percentage of patients)

Estimated ratio

1.80 (31.9%)

2.57 (38.6%)

0.68AC [0.53; 0.87]

0.22 (6.8%)

7.61B [5.17; 11.21]

3.52 (41.7%)

1.35 (17.1%)

3.74B [2.28; 6.13]

Body Weight (kg)

Baseline→End of trial

Mean change

Estimated difference

87.2→86.7

-0.5

87.4→89.0

1.6

-2.22AB [-2.64; -1.80]

87.4→84.4

-3.0

2.44B [2.02; 2.86]

87.2→87.7

0.5

89.3→88.3

-1.0

1.48B [0.90; 2.06]

FPG (mmol/L)

Baseline→End of trial

Mean change

Estimated difference

9.2→5.6

-3.62

9.4→5.8

-3.61

-0.17 [-0.41; 0.07]

9.0→7.3

-1.75

-1.76B [-2.0; -1.53]

9.1→6.5

-2.60

9.1→8.8

-0.31

-2.30B [-2.72; -1.89]

Dose End of trial

Insulin degludec (units)

Liraglutide (mg)

Estimated difference, insulin degludec dose

38

1.4

53

-

-14.90AB [-17.14; -12.66]

-

1.8

28

1.0

-

-

-

Baseline, End of trial and change values are observed Last observation carried forward. The 95% confidence interval is stated in '[]'

*Confirmed hypoglycaemia defined as severe hypoglycaemia (episode requiring assistance of another person) and/or minor hypoglycaemia (plasma glucose <3.1 mmol/L irrespective of symptoms)

A Endpoints with confirmed superiority of Xultophy 100/3.6 vs comparator

B p<0.0001

C p<0.05

Transfer from GLP-1 receptor agonist therapy

The efficacy and safety of Xultophy 100/3.6 (once-daily) compared to unchanged GLP-1 receptor agonist therapy (dosed according to label) were studied in a 26-weeks randomised, open-label, treat-to-target trial in patients with type 2 diabetes mellitus inadequately controlled on a GLP-1 receptor agonist and metformin alone (74.2%) or in combination with pioglitazone (2.5%), sulfonylurea (21.2%) or both (2.1%).

The starting dose of Xultophy 100/3.6 was 16 dose steps (16 units insulin degludec and 0.6 mg liraglutide) and the dose was titrated twice weekly according to Table 2. Patients in the GLP-1 receptor agonist arm were to continue pretrial GLP-1 receptor agonist treatment.

The key results of the trial are listed in Table 4 and Figure 3.

Table 4 Results of a 26-week trial with Xultophy 100/3.6 in patients with type 2 diabetes mellitus inadequately controlled on GLP-1 receptor agonists

Previous treatment with GLP-1 receptor agonist

Xultophy 100/3.6

GLP-1 receptor agonist

N

292

146

HbA1c (%)

Baseline→End of trial

Mean change

Estimated difference

7.8→6.4

-1.3

7.7→7.4

-0.3

-0.94AB[-1.11; -0.78]

Patients (%) achieving HbA1c <7%

All patients

Estimated odds ratio

75.3

35.6

6.84B [4.28; 10.94]

Patients (%) achieving HbA1c ≤6.5%

All patients

Estimated odds ratio

63.0

22.6

7.53B [4.58; 12.38]

Rate of confirmed hypoglycaemia* per patient year of exposure (percentage of patients)

Estimated ratio

2.82 (32.0%)

0.12 (2.8%)

25.36B [10.63; 60.51]

Body Weight (kg)

Baseline→End of trial

Mean change

Estimated difference

95.6→97.5

2.0

95.5→94.7

-0.8

2.89B [2.17; 3.62]

FPG (mmol/L)

Baseline→End of trial

Mean change

Estimated difference

9.0→6.0

-2.98

9.4→8.8

-0.60

-2.64B [-3.03; -2.25]

Dose End of trial

Insulin degludec (units)

Liraglutide (mg)

Estimated difference, insulin degludec dose

43

1.6

GLP-1 receptor agonist dose was to be continued unchanged from baseline

Baseline, End of trial and change values are observed Last observation carried forward. The 95% confidence interval is stated in '[]'

*Confirmed hypoglycaemia defined as severe hypoglycaemia (episode requiring assistance of another person) and/or minor hypoglycaemia (plasma glucose <3.1 mmol/L irrespective of symptoms)

A Endpoints with confirmed superiority of Xultophy 100/3.6 vs comparator

B p<0.001

IDegLira=Xultophy 100/3.6, GLP-1 RA=GLP-1 receptor agonist

Figure 3 Mean HbA1c (%) by treatment week in patients with type 2 diabetes mellitus inadequately controlled on GLP-1 receptor agonists

The rate per patient year of exposure (percentage of patients) of severe hypoglycaemia was 0.01 (1 patient out of 291) for Xultophy 100/3.6 and 0.00 (0 patients out of 199) for GLP-1 receptor agonists.

Transfer from basal insulin therapies

The efficacy and safety of Xultophy 100/3.6 compared to insulin glargine, both once daily, were studied in a 26-week randomised, open-label, treat-to-target trial in patients with type 2 diabetes mellitus inadequately controlled on insulin glargine (20-50 units) and metformin. The starting dose of Xultophy 100/3.6 was 16 dose steps and the starting dose of insulin glargine was equal to the pretrial daily dose. The dose in both arms was titrated twice weekly according to Table 2. The maximum allowed dose was 50 dose steps for Xultophy 100/3.6 while there was no maximum dose for insulin glargine.

The key results of the trial are listed in Table 5 and Figure 4.

54.3% of patients treated with Xultophy 100/3.6 reached the HbA1c target of <7% without confirmed hypoglycaemic episodes compared to 29.4% of patients treated with insulin glargine (odds ratio 3.24, p<0.001).

IDegLira=Xultophy 100/3.6, IGlar=insulin glargine

Figure 4 Mean HbA1c (%) by treatment week in patients with type 2 diabetes mellitus inadequately controlled on insulin glargine

The rate per patient year of exposure (percentage of patients) of severe hypoglycaemia was 0.00 (0 patients out of 278) for Xultophy 100/3.6 and 0.01 (1 patient out of 279) for insulin glargine. The rate of nocturnal hypoglycaemic events was significantly lower with Xultophy 100/3.6 compared to insulin glargine (estimated treatment ratio 0.17, p<0.001).

The efficacy and safety of Xultophy 100/3.6 compared to insulin degludec, both once daily, were studied in a 26-weeks randomised, double-blind, treat-to-target trial in patients with type 2 diabetes mellitus inadequately controlled on basal insulin (20-40 units) and metformin alone or in combination with sulfonylurea/glinides. Basal insulin and sulfonylurea/glinides were discontinued at randomisation.

The starting dose of Xultophy 100/3.6 and insulin degludec was 16 dose steps (16 units insulin degludec and 0.6 mg liraglutide) and 16 units, respectively, and the dose was titrated twice weekly according to Table 2. The maximum allowed dose was 50 dose steps for Xultophy 100/3.6 and 50 units for insulin degludec.

The key results of the trial are listed in Table 5 and Figure 5.

48.7% of patients reached the HbA1c target of <7% without confirmed hypoglycaemic episodes, which was a significantly higher proportion than observed with insulin degludec (15.6%, odds ratio 5.57, p<0.0001).

IDegLira=Xultophy 100/3.6, IDeg=insulin degludec

Figure 5 Mean HbA1c (%) by treatment week in patients with type 2 diabetes mellitus inadequately controlled on basal insulin

The rate per patient year of exposure (percentage of patients) of severe hypoglycaemia was 0.01 (1 patient out of 199) for Xultophy 100/3.6 and 0.00 (0 patients out of 199) for insulin degludec. The rate of nocturnal hypoglycaemic events was similar with Xultophy 100/3.6 and insulin degludec treatment.

Table 5 Results from two 26-week trials with Xultophy 100/3.6 in patients with type 2 diabetes mellitus either inadequately controlled on insulin glargine (left) or basal insulin (right)

Previous treatment with insulin glargine

Previous treatment with basal insulin (NPH, insulin detemir, insulin glargine)

Xultophy 100/3.6

Insulin glargine, no limitation to dose

Xultophy 100/3.6

Insulin degludec, maximum 50 units allowed

N

278

279

199

199

HbA1c (%)

Baseline→End of trial

Mean change

Estimated difference

8.4→6.6

-1.81

8.2→7.1

-1.13

-0.59AB[-0.74; -0.45]

8.7→6.9

-1.90

8.8→8.0

-0.89

-1.05AB[-1.25; -0.84]

Patients (%) achieving HbA1c <7%

All patients

Estimated odds ratio

71.6

47.0

3.45B [2.36;5.05]

60.3

23.1

5.44B [3.42; 8.66]

Patients (%) achieving HbA1c ≤6.5%

All patients

Estimated odds ratio

55.4

30.8

3.29B [2.27; 4.75]

45.2

13.1

5.66B [3.37; 9.51]

Rate of confirmed hypoglycaemia* per patient year of exposure (percentage of patients)

Estimated ratio

2.23 (28.4%)

5.05 (49.1%)

0.43AB [0.30; 0.61]

1.53 (24.1%)

2.63 (24.6%)

0.66 [0.39; 1.13]

Body Weight (kg)

Baseline→End of trial

Mean change

Estimated difference

88.3→86.9

-1.4

87.3→89.1

1.8

-3.20AB [-3.77; -2.64]

95.4→92.7

-2.7

93.5→93.5

0.0

-2.51B [-3.21; -1.82]

FPG (mmol/L)

Baseline→End of trial

Mean change

Estimated difference

8.9→6.1

-2.83

8.9→6.1

-2.77

-0.01 [-0.35; 0.33]

9.7→6.2

-3.46

9.6→7.0

-2.58

-0.73C [-1.19; -0.27]

Dose End of trial

Insulin (units)

Liraglutide (mg)

Estimated difference, basal insulin dose

41

1.5

66D

-

-25.47B [-28.90; -22.05]

45

1.7

45

-

-0.02 [-1.88; 1.84]

Baseline, End of trial and change values are observed Last observation carried forward. The 95% confidence interval is stated in '[]'

*Confirmed hypoglycaemia defined as severe hypoglycaemia (episode requiring assistance of another person) and/or minor hypoglycaemia (plasma glucose <3.1 mmol/L irrespective of symptoms)

A Endpoints with confirmed superiority of Xultophy 100/3.6 vs comparator

B p<0.0001

C p<0.05

D The average pre-trial dose of insulin glargine was 32 units

Treatment with Xultophy 100/3.6 compared to a basal-bolus insulin regimen consisting of basal insulin (insulin glargine 100 units/mL) in combination with bolus insulin (insulin aspart) studied in a 26-week trial in patients with type 2 diabetes mellitus inadequately controlled on insulin glargine and metformin demonstrated a similar reduction of HbA1c in the two groups (mean value from 8.2% to 6.7% in both groups). In both groups 66%-67% achieved HbA1c < 7%. Compared to baseline, there was a mean reduction in body weight of 0.9 kg for Xultophy 100/3.6 and a mean increase of 2.6 kg for patients treated with a basal-bolus regimen and the estimated treatment difference was -3.57 kg [95% CI: -4.19; -2.95]. The percentage of patients experiencing severe or blood-glucose confirmed symptomatic hypoglycaemia was 19.8% in the Xultophy 100/3.6 group and 52.6% in the basal-bolus insulin group, and the estimated rate ratio was 0.11 [95% CI: 0.08-0.17]. The total daily insulin dose at end of trial was 40 units for patients treated with Xultophy 100/3.6 and 84 units (52 units of basal insulin and 32 units of bolus insulin) for patients treated with a basal-bolus insulin regimen.

Other clinical data

Insulin secretion/beta-cell function

Xultophy 100/3.6 improves beta-cell function compared to insulin degludec as measured by the homeostasis model assessment for beta-cell function (HOMA-β). Improved insulin secretion compared to insulin degludec in response to a standardised meal test was demonstrated in 260 patients with type 2 diabetes after 52 weeks of treatment. No data is available beyond 52 weeks of treatment.

Blood pressure

In patients inadequately controlled on metformin alone or in combination with pioglitazone, Xultophy 100/3.6 reduced mean systolic blood pressure by 1.8 mmHg compared to a reduction of 0.7 mmHg with insulin degludec and 2.7 mmHg with liraglutide. In patients inadequately controlled on sulfonylurea alone or in combination with metformin, the reduction was 3.5 mmHg with Xultophy 100/3.6 and 3.2 mmHg with placebo. The differences were not statistically significant. In three trials with patients inadequately controlled on basal insulin, systolic blood pressure was reduced by 5.4 mmHg with Xultophy 100/3.6 and 1.7 mmHg with insulin degludec, with a statistically significant estimated treatment difference of -3.71 mmHg (p=0.0028), reduced by 3.7 mmHg with Xultophy 100/3.6 vs 0.2 mmHg with insulin glargine, with a statistically significant estimated treatment difference of -3.57 mmHg (p<0.001) and reduced by 4.5 mmHg with Xultophy 100/3.6 vs 1.16 mmHg with insulin glargine U100 plus insulin aspart, with a statistically significant estimated treatment difference of -3.70 mmHg (p=0.0003).

Paediatric population

).

Pharmacokinetic properties

Overall, the pharmacokinetics of insulin degludec and liraglutide were not affected in a clinically relevant manner when administered as Xultophy 100/3.6 compared with independent injections of insulin degludec and liraglutide.

The following reflects the pharmacokinetic properties of Xultophy 100/3.6 unless stated that the presented data is from administration of insulin degludec or liraglutide alone.

Absorption

The overall exposure of insulin degludec was equivalent following administration of Xultophy 100/3.6 versus insulin degludec alone while the Cmax was higher by 12%. The overall exposure of liraglutide was equivalent following administration of Xultophy 100/3.6 versus liraglutide alone while Cmax was lower by 23%. The differences are considered of no clinical relevance since Xultophy 100/3.6 is initiated and titrated according to the individual patient's blood glucose targets.

Insulin degludec and liraglutide exposure increased proportionally with the Xultophy 100/3.6 dose within the full dose range based on a population pharmacokinetic analysis.

The pharmacokinetic profile of Xultophy 100/3.6 is consistent with once-daily dosing and steady-state concentration of insulin degludec and liraglutide is reached after 2-3 days of daily administration.

Distribution

Insulin degludec and liraglutide are extensively bound to plasma proteins (>99% and >98%, respectively).

Biotransformation

Insulin degludec

Degradation of insulin degludec is similar to that of human insulin; all metabolites formed are inactive.

Liraglutide

During 24 hours following administration of a single radiolabelled [3H]-liraglutide dose to healthy subjects, the major component in plasma was intact liraglutide. Two minor plasma metabolites were detected (≤9% and ≤5% of total plasma radioactivity exposure). Liraglutide is metabolised in a similar manner to large proteins without a specific organ having been identified as major route of elimination.

Elimination

The half-life of insulin degludec is approximately 25 hours and the half-life of liraglutide is approximately 13 hours.

Special populations

Elderly patients

Age had no clinically relevant effect on the pharmacokinetics of Xultophy 100/3.6 based on results from a population pharmacokinetic analysis including adult patients up to 83 years treated with Xultophy 100/3.6.

Gender

Gender had no clinically relevant effect on the pharmacokinetics of Xultophy 100/3.6 based on results from a population pharmacokinetic analysis.

Ethnic origin

Ethnic origin had no clinically relevant effect on the pharmacokinetics of Xultophy 100/3.6 based on results from a population pharmacokinetic analysis including White, Black, Indian, Asian and Hispanic groups.

Renal impairment

Insulin degludec

There is no difference in the pharmacokinetics of insulin degludec between healthy subjects and patients with renal impairment.

Liraglutide

Liraglutide exposure was reduced in patients with renal impairment compared to individuals with normal renal function. Liraglutide exposure was lowered by 33%, 14%, 27% and 26%, in patients with mild (creatinine clearance, CrCl 50-80 mL/min), moderate (CrCl 30-50 mL/min), and severe (CrCl <30 mL/min) renal impairment and in end-stage renal disease requiring dialysis, respectively.

Similarly, in a 26-week clinical trial, patients with type 2 diabetes and moderate renal impairment (CrCL 30-59 mL/min) had 26% lower liraglutide exposure when compared with a separate trial including patients with type 2 diabetes with normal renal function or mild renal impairment.

Hepatic impairment

Insulin degludec

There is no difference in the pharmacokinetics of insulin degludec between healthy subjects and patients with hepatic impairment.

Liraglutide

The pharmacokinetics of liraglutide was evaluated in patients with varying degrees of hepatic impairment in a single-dose trial. Liraglutide exposure was decreased by 13-23% in patients with mild to moderate hepatic impairment compared to healthy subjects. Exposure was significantly lower (44%) in patients with severe hepatic impairment (Child Pugh score > 9).

Paediatric population

No studies have been performed with Xultophy 100/3.6 in children and adolescents below 18 years of age.

Name of the medicinal product

Xultophy 100/3.6

Qualitative and quantitative composition

Insulin Degludec; Liraglutide

Special warnings and precautions for use

Xultophy 100/3.6 should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

Hypoglycaemia

Hypoglycaemia may occur if the dose of Xultophy 100/3.6 is higher than required. Omission of a meal or unplanned strenuous physical exercise may lead to hypoglycaemia. In combination with sulfonylurea, the risk of hypoglycaemia may be lowered by a reduction in the dose of sulfonylurea. Concomitant diseases in the kidney, liver or diseases affecting the adrenal, pituitary or thyroid gland may require changes of the Xultophy 100/3.6 dose. Patients whose blood glucose control is greatly improved (e.g. by intensified therapy) may experience a change in their usual warning symptoms of hypoglycaemia and must be advised accordingly. Usual warning symptoms of hypoglycaemia may disappear in patients with long-standing diabetes. The prolonged effect of Xultophy 100/3.6 may delay recovery from hypoglycaemia.

Hyperglycaemia

Inadequate dosing and/or discontinuation of antidiabetic treatment may lead to hyperglycaemia and potentially to hyperosmolar coma. In case of discontinuation of Xultophy 100/3.6, ensure that instruction for initiation of alternative antidiabetic medication is followed. Furthermore, concomitant illness, especially infections, may lead to hyperglycaemia and thereby cause an increased requirement for antidiabetic treatment. Usually, the first symptoms of hyperglycaemia develop gradually over a period of hours or days. They include thirst, increased frequency of urination, nausea, vomiting, drowsiness, flushed dry skin, dry mouth, and loss of appetite as well as acetone odour of breath.

Administration of rapid-acting insulin should be considered in situations of severe hyperglycaemia. Untreated hyperglycaemic events eventually lead to hyperosmolar coma/diabetic ketoacidosis, which is potentially lethal.

Combination of pioglitazone and insulin medicinal products

Cases of cardiac failure have been reported when pioglitazone was used in combination with insulin medicinal products, especially in patients with risk factors for development of cardiac failure. This should be kept in mind if treatment with the combination of pioglitazone and Xultophy 100/3.6 is considered. If the combination is used, patients should be observed for signs and symptoms of heart failure, weight gain and oedema. Pioglitazone should be discontinued if any deterioration in cardiac symptoms occurs.

Eye disorder

Intensification of therapy with insulin, a component of Xultophy 100/3.6, with abrupt improvement in glycaemic control may be associated with temporary worsening of diabetic retinopathy, while long-term improved glycaemic control decreases the risk of progression of diabetic retinopathy.

Antibody formation

Administration of Xultophy 100/3.6 may cause formation of antibodies against insulin degludec and/or liraglutide. In rare cases, the presence of such antibodies may necessitate adjustment of the Xultophy 100/3.6 dose in order to correct a tendency to hyper- or hypoglycaemia. Very few patients developed insulin degludec specific antibodies, antibodies cross-reacting to human insulin or anti-liraglutide antibodies following treatment with Xultophy 100/3.6. Antibody formation has not been associated with reduced efficacy of Xultophy 100/3.6.

Acute pancreatitis

Use of GLP-1 receptor agonists including liraglutide, a component of Xultophy 100/3.6, has been associated with a risk of developing acute pancreatitis. There have been few reported events of acute pancreatitis. Patients should be informed of the characteristic symptoms of acute pancreatitis. If pancreatitis is suspected, Xultophy 100/3.6 should be discontinued; if acute pancreatitis is confirmed, Xultophy 100/3.6 should not be restarted. Caution should be exercised in patients with a history of pancreatitis.

Thyroid adverse events

Thyroid adverse events, including increased blood calcitonin, goitre and thyroid neoplasm have been reported in clinical trials with GLP-1 receptor agonists including liraglutide, a component of Xultophy 100/3.6, in particular in patients with pre-existing thyroid disease, and Xultophy 100/3.6 should therefore be used with caution in these patients.

Inflammatory bowel disease and diabetic gastroparesis

There is no experience with Xultophy 100/3.6 in patients with inflammatory bowel disease and diabetic gastroparesis. Xultophy 100/3.6 is therefore not recommended in these patients.

Dehydration

Signs and symptoms of dehydration, including renal impairment and acute renal failure have been reported in clinical trials with GLP-1 receptor agonists including liraglutide, a component of Xultophy 100/3.6. Patients treated with Xultophy 100/3.6 should be advised of the potential risk of dehydration in relation to gastrointestinal side effects and take precautions to avoid fluid depletion.

Avoidance of medication errors

Patients must be instructed to always check the pen label before each injection to avoid accidental mix-ups between Xultophy 100/3.6 and other injectable diabetes medicinal products.

Patients must visually verify the dialled units on the dose counter of the pen. Therefore, the requirement for patients to self-inject is that they can read the dose counter on the pen. Patients who are blind or have poor vision must be instructed to always get help/assistance from another person who has good vision and is trained in using the insulin device.

To avoid dosing errors and potential overdose, patients and healthcare professionals should never use a syringe to draw the medicinal product from the cartridge in the pre-filled pen.

In the event of blocked needles, patients must follow the instructions described in the instructions for use accompanying the package leaflet.

Populations not studied

Transfer to Xultophy 100/3.6 from doses of basal insulin <20 and >50 units has not been studied.

Xultophy 100/3.6 has not been studied in combination with dipeptidyl peptidase 4 (DPP-4) inhibitors, glinides or prandial insulin.

There is limited experience in patients with congestive heart failure New York Heart Association (NYHA) class I-II and Xultophy 100/3.6 should therefore be used with caution in these patients. There is no experience in patients with congestive heart failure NYHA class III-IV and Xultophy 100/3.6 is therefore not recommended in these patients.

Excipients

Xultophy 100/3.6 contains less than 1 mmol sodium (23 mg) per dose, therefore the medicinal product is essentially 'sodium-free'.

Effects on ability to drive and use machines

The patient's ability to concentrate and react may be impaired as a result of hypoglycaemia. This may constitute a risk in situations where these abilities are of special importance (e.g. driving a car or using machines).

Patients must be advised to take precautions to avoid hypoglycaemia while driving. This is particularly important in those who have reduced or absent awareness of the warning signs of hypoglycaemia or have frequent episodes of hypoglycaemia. The advisability of driving should be considered in these circumstances.

Dosage (Posology) and method of administration

Posology

Xultophy 100/3.6 is given once daily by subcutaneous administration. Xultophy 100/3.6 can be administered at any time of the day, preferably at the same time of the day.

Xultophy 100/3.6 is to be dosed in accordance with the individual patient's needs. It is recommended to optimise glycaemic control via dose adjustment based on fasting plasma glucose.

Adjustment of dose may be necessary if patients undertake increased physical activity, change their usual diet or during concomitant illness.

Patients who forget a dose are advised to take it upon discovery and then resume their usual once-daily dosing schedule. A minimum of 8 hours between injections should always be ensured. This also applies when administration at the same time of the day is not possible.

Xultophy 100/3.6 is administered as dose steps. One dose step contains 1 unit of insulin degludec and 0.036 mg of liraglutide. The pre-filled pen can provide from 1 up to 50 dose steps in one injection in increments of one dose step. The maximum daily dose of Xultophy 100/3.6 is 50 dose steps (50 units insulin degludec and 1.8 mg liraglutide). The dose counter on the pen shows the number of dose steps.

Add-on to oral glucose-lowering medicinal products

The recommended starting dose of Xultophy 100/3.6 is 10 dose steps (10 units insulin degludec and 0.36 mg liraglutide).

Xultophy 100/3.6 can be added to existing oral antidiabetic treatment. When Xultophy 100/3.6 is added to sulfonylurea therapy, a reduction in the dose of sulfonylurea should be considered.

Transfer from GLP-1 receptor agonist

Therapy with GLP-1 receptor agonists should be discontinued prior to initiation of Xultophy 100/3.6. When transferring from a GLP-1 receptor agonist, the recommended starting dose of Xultophy 100/3.6 is 16 dose steps (16 units insulin degludec and 0.6 mg liraglutide). The recommended starting dose should not be exceeded. If transferring from a long-acting GLP-1 receptor agonist (e.g. once-weekly dosing), the prolonged action should be considered. Treatment with Xultophy 100/3.6 should be initiated at the moment the next dose of the long-acting GLP-1 receptor agonist would have been taken. Close glucose monitoring is recommended during the transfer and in the following weeks.

Transfer from basal insulin

Therapy with basal insulin should be discontinued prior to initiation of Xultophy 100/3.6. When transferring from basal insulin therapy, the recommended starting dose of Xultophy 100/3.6 is 16 dose steps (16 units insulin degludec and 0.6 mg liraglutide). The recommended starting dose should not be exceeded. Close glucose monitoring is recommended during the transfer and in the following weeks.

Special populations

Elderly patients (>65 years old)

Xultophy 100/3.6 can be used in elderly patients. Glucose monitoring is to be intensified and the dose adjusted on an individual basis. The therapeutic experience in patients >75 years of age is limited.

Renal impairment

When Xultophy 100/3.6 is used in patients with mild or moderate renal impairment, glucose monitoring is to be intensified and the dose adjusted on an individual basis. Xultophy 100/3.6 cannot be recommended for use in patients with severe renal impairment including patients with end-stage renal disease.

Hepatic impairment

Xultophy 100/3.6 can be used in patients with mild or moderate hepatic impairment. Glucose monitoring is to be intensified and the dose adjusted on an individual basis.

Due to the liraglutide component, Xultophy 100/3.6 is not recommended for use in patients with severe hepatic impairment.

Paediatric population

There is no relevant use of Xultophy 100/3.6 in the paediatric population.

Method of administration

Xultophy 100/3.6 is for subcutaneous use only. Xultophy 100/3.6 must not be administered intravenously or intramuscularly.

Xultophy 100/3.6 is administered subcutaneously by injection in the thigh, the upper arm or the abdomen.

Xultophy 100/3.6 must not be drawn from the cartridge of the pre-filled pen into a syringe.

Patients should be instructed to always use a new needle. The re-use of insulin pen needles increases the risk of blocked needles, which may cause under or overdosing. In the event of blocked needles, patients must follow the instructions described in the instructions for use accompanying the package leaflet.

Special precautions for disposal and other handling

The pre-filled pen is designed to be used with NovoTwist or NovoFine injection needles up to a length of 8 mm and as thin as 32G.

The pre-filled pen is for use by one person only.

Xultophy 100/3.6 must not be used if the solution does not appear clear and colourless.

Xultophy 100/3.6 which has been frozen must not be used.

A new needle must always be attached before each use. Needles must not be re-used. The patient should discard the needle after each injection.

In the event of blocked needles, patients must follow the instructions described in the instructions for use accompanying the package leaflet.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

For detailed instructions for use, see the package leaflet.