In the event of an overdose with TRADJENTA, contact the Poison Control Center. Employ the usual supportive measures (e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring, and institute supportive treatment) as dictated by the patient’s clinical status. Removal of linagliptin by hemodialysis or peritoneal dialysis is unlikely.
During controlled clinical trials in healthy subjects, with single doses of up to 600 mg of TRADJENTA (equivalent to 120 times the recommended daily dose) there were no dose-related clinical adverse drug reactions. There is no experience with doses above 600 mg in humans.
TRADJENTA is contraindicated in patients with a history of a hypersensitivity reaction to linagliptin, such as anaphylaxis, angioedema, exfoliative skin conditions, urticaria, or bronchial hyperreactivity.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
The safety evaluation of TRADJENTA 5 mg once daily in patients with type 2 diabetes is based on 14 placebo-controlled trials, 1 active-controlled study, and one study in patients with severe renal impairment. In the 14 placebo-controlled studies, a total of 3625 patients were randomized and treated with TRADJENTA 5 mg daily and 2176 with placebo. The mean exposure in patients treated with TRADJENTA across studies was 29.6 weeks. The maximum follow-up was 78 weeks.
TRADJENTA 5 mg once daily was studied as monotherapy in three placebo-controlled trials of 18 and 24 weeks’ duration and in five additional placebo-controlled studies lasting ≤18 weeks. The use of TRADJENTA in combination with other antihyperglycemic agents was studied in six placebo-controlled trials: two with metformin (12 and 24 weeks’ treatment duration); one with a sulfonylurea (18 weeks’ treatment duration); one with metformin and sulfonylurea (24 weeks’ treatment duration); one with pioglitazone (24 weeks’ treatment duration); and one with insulin (primary endpoint at 24 weeks).
In a pooled dataset of 14 placebo-controlled clinical trials, adverse reactions that occurred in ≥2% of patients receiving TRADJENTA (n = 3625) and more commonly than in patients given placebo (n = 2176), are shown in Table 1. The overall incidence of adverse events with TRADJENTA were similar to placebo.
Table 1: Adverse Reactions Reported in ≥2% of Patients Treated with TRADJENTA and Greater than Placebo in Placebo-Controlled Clinical Studies of TRADJENTA Monotherapy or Combination Therapy
Number (%) of Patients | ||
TRADJENTA 5 mg n = 3625 |
Placebo n = 2176 |
|
Nasopharyngitis | 254 (7.0) | 132 (6.1) |
Diarrhea | 119 (3.3) | 65 (3.0) |
Cough | 76 (2.1) | 30 (1.4) |
Rates for other adverse reactions for TRADJENTA 5 mg vs placebo when TRADJENTA was used in combination with specific anti-diabetic agents were: urinary tract infection (3.1% vs 0%) and hypertriglyceridemia (2.4% vs 0%) when TRADJENTA was used as add-on to sulfonylurea; hyperlipidemia (2.7% vs 0.8%) and weight increased (2.3% vs 0.8%) when TRADJENTA was used as add-on to pioglitazone; and constipation (2.1% vs 1%) when TRADJENTA was used as add-on to basal insulin therapy.
Following 104 weeks’ treatment in a controlled study comparing TRADJENTA with glimepiride in which all patients were also receiving metformin, adverse reactions reported in ≥5% of patients treated with TRADJENTA (n = 776) and more frequently than in patients treated with a sulfonylurea (n = 775) were back pain (9.1% vs 8.4%), arthralgia (8.1% vs 6.1%), upper respiratory tract infection (8.0% vs 7.6%), headache (6.4% vs 5.2%), cough (6.1% vs 4.9%), and pain in extremity (5.3% vs 3.9%).
Other adverse reactions reported in clinical studies with treatment of TRADJENTA were hypersensitivity (e.g., urticaria, angioedema, localized skin exfoliation, or bronchial hyperreactivity) and myalgia. In the clinical trial program, pancreatitis was reported in 15.2 cases per 10,000 patient year exposure while being treated with TRADJENTA compared with 3.7 cases per 10,000 patient year exposure while being treated with comparator (placebo and active comparator, sulfonylurea). Three additional cases of pancreatitis were reported following the last administered dose of linagliptin.
HypoglycemiaIn the placebo-controlled studies, 199 (6.6%) of the total 2994 patients treated with TRADJENTA 5 mg reported hypoglycemia compared to 56 patients (3.6%) of 1546 placebo-treated patients. The incidence of hypoglycemia was similar to placebo when TRADJENTA was administered as monotherapy or in combination with metformin, or with pioglitazone. When TRADJENTA was administered in combination with metformin and a sulfonylurea, 181 of 792 (22.9%) patients reported hypoglycemia compared with 39 of 263 (14.8%) patients administered placebo in combination with metformin and a sulfonylurea. Adverse reactions of hypoglycemia were based on all reports of hypoglycemia. A concurrent glucose measurement was not required or was normal in some patients. Therefore, it is not possible to conclusively determine that all these reports reflect true hypoglycemia.
In the study of patients receiving TRADJENTA as add-on therapy to a stable dose of insulin for up to 52 weeks (n=1261), no significant difference in the incidence of investigator reported hypoglycemia, defined as all symptomatic or asymptomatic episodes with a self-measured blood glucose ≤70 mg/dL, was noted between the TRADJENTA-(31.4%) and placebo-(32.9%) treated groups. During the same time period, severe hypoglycemic events, defined as requiring the assistance of another person to actively administer carbohydrate, glucagon or other resuscitative actions, were reported in 11 (1.7%) of TRADJENTA treated patients and 7 (1.1%) of placebo treated patients. Events that were considered life-threatening or required hospitalization were reported in 3 (0.5%) patients on TRADJENTA and 1 (0.2%) on placebo.
Use In Renal ImpairmentTRADJENTA was compared to placebo as add-on to pre-existing antidiabetic therapy over 52 weeks in 133 patients with severe renal impairment (estimated GFR <30 mL/min). For the initial 12 weeks of the study, background antidiabetic therapy was kept stable and included insulin, sulfonylurea, glinides, and pioglitazone. For the remainder of the trial, dose adjustments in antidiabetic background therapy were allowed.
In general, the incidence of adverse events including severe hypoglycemia was similar to those reported in other TRADJENTA trials. The observed incidence of hypoglycemia was higher (TRADJENTA, 63% compared to placebo, 49%) due to an increase in asymptomatic hypoglycemic events especially during the first 12 weeks when background glycemic therapies were kept stable. Ten TRADJENTA-treated patients (15%) and 11 placebo-treated patients (17%) reported at least one episode of confirmed symptomatic hypoglycemia (accompanying finger stick glucose ≤54 mg/dL). During the same time period, severe hypoglycemic events, defined as an event requiring the assistance of another person to actively administer carbohydrate, glucagon or other resuscitative actions, were reported in 3 (4.4%) TRADJENTA-treated patients and 3 (4.6%) placebo-treated patients. Events that were considered life-threatening or required hospitalization were reported in 2 (2.9%) patients on TRADJENTA and 1 (1.5%) patient on placebo.
Renal function as measured by mean eGFR and creatinine clearance did not change over 52 weeks’ treatment compared to placebo.
Laboratory TestsChanges in laboratory findings were similar in patients treated with TRADJENTA 5 mg compared to patients treated with placebo.
Increase in Uric AcidChanges in laboratory values that occurred more frequently in the TRADJENTA group and ≥1% more than in the placebo group were increases in uric acid (1.3% in the placebo group, 2.7% in the TRADJENTA group).
Increase in LipaseIn a placebo-controlled clinical trial with TRADJENTA in type 2 diabetes mellitus patients with micro-or macroalbuminuria, a mean increase of 30% in lipase concentrations from baseline to 24 weeks was observed in the TRADJENTA arm compared to a mean decrease of 2% in the placebo arm. Lipase levels above 3 times upper limit of normal were seen in 8.2% compared to 1.7% patients in the TRADJENTA and placebo arms, respectively.
Vital SignsNo clinically meaningful changes in vital signs were observed in patients treated with TRADJENTA.
Postmarketing ExperienceAdditional adverse reactions have been identified during postapproval use of TRADJENTA. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
TRADJENTA is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Important Limitations Of UseTRADJENTA should not be used in patients with type 1 diabetes or for the treatment of diabetic ketoacidosis, as it would not be effective in these settings.
TRADJENTA has not been studied in patients with a history of pancreatitis. It is unknown whether patients with a history of pancreatitis are at an increased risk for the development of pancreatitis while using TRADJENTA.
Linagliptin binds to DPP-4 in a reversible manner and thus increases the concentrations of incretin hormones. Linagliptin glucose dependently increases insulin secretion and lowers glucagon secretion, thus resulting in better regulation of glucose homeostasis. Linagliptin binds selectively to DPP-4, and selectively inhibits DPP4 but not DPP-8 or DPP-9 activity in vitro at concentrations approximating therapeutic exposures.
Cardiac ElectrophysiologyIn a randomized, placebo-controlled, active-comparator, 4-way crossover study, 36 healthy subjects were administered a single oral dose of linagliptin 5 mg, linagliptin 100 mg (20 times the recommended dose), moxifloxacin, and placebo. No increase in QTc was observed with either the recommended dose of 5 mg or the 100-mg dose. At the 100-mg dose, peak linagliptin plasma concentrations were approximately 38-fold higher than the peak concentrations following a 5-mg dose.
The pharmacokinetics of linagliptin has been characterized in healthy subjects and patients with type 2 diabetes. After oral administration of a single 5-mg dose to healthy subjects, peak plasma concentrations of linagliptin occurred at approximately 1.5 hours post dose (Tmax); the mean plasma area under the curve (AUC) was 139 nmol*h/L and maximum concentration (Cmax) was 8.9 nmol/L.
Plasma concentrations of linagliptin decline in at least a biphasic manner with a long terminal half-life (>100 hours), related to the saturable binding of linagliptin to DPP-4. The prolonged elimination phase does not contribute to the accumulation of the drug. The effective half-life for accumulation of linagliptin, as determined from oral administration of multiple doses of linagliptin 5 mg, is approximately 12 hours. After once-daily dosing, steady-state plasma concentrations of linagliptin 5 mg are reached by the third dose, and Cmax and AUC increased by a factor of 1.3 at steady state compared with the first dose. The intra-subject and inter-subject coefficients of variation for linagliptin AUC were small (12.6% and 28.5%, respectively). Plasma AUC of linagliptin increased in a less than dose-proportional manner in the dose range of 1 to 10 mg. The pharmacokinetics of linagliptin is similar in healthy subjects and in patients with type 2 diabetes.
AbsorptionThe absolute bioavailability of linagliptin is approximately 30%. High-fat meal reduced Cmax by 15% and increased AUC by 4%; this effect is not clinically relevant. TRADJENTA may be administered with or without food.
DistributionThe mean apparent volume of distribution at steady state following a single intravenous dose of linagliptin 5 mg to healthy subjects is approximately 1110 L, indicating that linagliptin extensively distributes to the tissues. Plasma protein binding of linagliptin is concentration-dependent, decreasing from about 99% at 1 nmol/L to 75%-89% at ≥30 nmol/L, reflecting saturation of binding to DPP-4 with increasing concentration of linagliptin. At high concentrations, where DPP-4 is fully saturated, 70% to 80% of linagliptin remains bound to plasma proteins and 20% to 30% is unbound in plasma. Plasma binding is not altered in patients with renal or hepatic impairment.
MetabolismFollowing oral administration, the majority (about 90%) of linagliptin is excreted unchanged, indicating that metabolism represents a minor elimination pathway. A small fraction of absorbed linagliptin is metabolized to a pharmacologically inactive metabolite, which shows a steady-state exposure of 13.3% relative to linagliptin.
ExcretionFollowing administration of an oral [14C]-linagliptin dose to healthy subjects, approximately 85% of the administered radioactivity was eliminated via the enterohepatic system (80%) or urine (5%) within 4 days of dosing. Renal clearance at steady state was approximately 70 mL/min.
The limited data with TRADJENTA use in pregnant women are not sufficient to inform of drug-associated risk for major birth defects and miscarriage. There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy [see Clinical Considerations].
In animal reproduction studies, no adverse developmental effects were observed when linagliptin was administered to pregnant rats during the period of organogenesis at doses similar to the maximum recommended clinical dose, based on exposure [see Data].
The estimated background risk of major birth defects is 6-10% in women with pre-gestational diabetes with a HbA1c>7 and has been reported to be as high as 20-25% in women with HbA1c>10. The estimated background risk of miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.
Clinical ConsiderationsDisease-associated Maternal and/or Embryo/Fetal Risk
Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, pre-eclampsia, and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, still birth, and macrosomia related morbidity.
DataAnimal Data
No adverse developmental outcome was observed when linagliptin was administered to pregnant Wistar Han rats and Himalayan rabbits during the period of organogenesis at doses up to 240 mg/kg and 150 mg/kg, respectively. These doses represent approximately 943 times (rats) and 1943 times (rabbits) the 5 mg clinical dose, based on exposure. No adverse functional, behavioral, or reproductive outcome was observed in offspring following administration of linagliptin to Wistar Han rats from gestation day 6 to lactation day 21 at a dose 49 times the 5 mg clinical dose, based on exposure.
TRADJENTA (linagliptin) 5 mg tablets are light red, round, biconvex, bevel-edged, film-coated tablets with “D5” debossed on one side and the Boehringer Ingelheim logo debossed on the other side.
Storage And HandlingTRADJENTA tablets are available as light red, round, biconvex, bevel-edged, film-coated tablets containing 5 mg of linagliptin. TRADJENTA tablets are debossed with “D5” on one side and the Boehringer Ingelheim logo on the other side.
They are supplied as follows:
Bottles of 30 (NDC 0597-0140-30)
Bottles of 90 (NDC 0597-0140-90)
Cartons containing 10 blister cards of 10 tablets each (10 x 10) (NDC 0597-0140-61), institutional pack.
If repackaging is required, dispense in a tight container as defined in USP.
StorageStore at 25°C (77°F); excursions permitted to 15°-30°C (59°-86°F) . Store in a safe place out of reach of children.
Distributed by: Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT 06877 USA. Revised: Aug 2017
Included as part of the "PRECAUTIONS" Section
PRECAUTIONS PancreatitisThere have been postmarketing reports of acute pancreatitis, including fatal pancreatitis, in patients taking TRADJENTA. Take careful notice of potential signs and symptoms of pancreatitis. If pancreatitis is suspected, promptly discontinue TRADJENTA and initiate appropriate management. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using TRADJENTA.
Heart FailureAn association between DPP-4 inhibitor treatment and heart failure has been observed in cardiovascular outcomes trials for two other members of the DPP-4 inhibitor class. These trials evaluated patients with type 2 diabetes mellitus and atherosclerotic cardiovascular disease.
Consider the risks and benefits of TRADJENTA prior to initiating treatment in patients at risk for heart failure, such as those with a prior history of heart failure and a history of renal impairment, and observe these patients for signs and symptoms of heart failure during therapy. Advise patients of the characteristic symptoms of heart failure and to immediately report such symptoms. If heart failure develops, evaluate and manage according to current standards of care and consider discontinuation of TRADJENTA.
Use With Medications Known To Cause HypoglycemiaInsulin secretagogues and insulin are known to cause hypoglycemia. The use of TRADJENTA in combination with an insulin secretagogue (e.g., sulfonylurea) was associated with a higher rate of hypoglycemia compared with placebo in a clinical trial. The use of TRADJENTA in combination with insulin in subjects with severe renal impairment was associated with a higher rate of hypoglycemia. Therefore, a lower dose of the insulin secretagogue or insulin may be required to reduce the risk of hypoglycemia when used in combination with TRADJENTA.
Hypersensitivity ReactionsThere have been postmarketing reports of serious hypersensitivity reactions in patients treated with TRADJENTA. These reactions include anaphylaxis, angioedema, and exfoliative skin conditions. Onset of these reactions occurred within the first 3 months after initiation of treatment with TRADJENTA, with some reports occurring after the first dose. If a serious hypersensitivity reaction is suspected, discontinue TRADJENTA, assess for other potential causes for the event, and institute alternative treatment for diabetes.
Angioedema has also been reported with other dipeptidyl peptidase-4 (DPP-4) inhibitors. Use caution in a patient with a history of angioedema to another DPP-4 inhibitor because it is unknown whether such patients will be predisposed to angioedema with TRADJENTA.
Severe And Disabling ArthralgiaThere have been postmarketing reports of severe and disabling arthralgia in patients taking DPP-4 inhibitors. The time to onset of symptoms following initiation of drug therapy varied from one day to years. Patients experienced relief of symptoms upon discontinuation of the medication. A subset of patients experienced a recurrence of symptoms when restarting the same drug or a different DPP-4 inhibitor. Consider DPP-4 inhibitors as a possible cause for severe joint pain and discontinue drug if appropriate.
Bullous PemphigoidPostmarketing cases of bullous pemphigoid requiring hospitalization have been reported with DPP-4 inhibitor use. In reported cases, patients typically recovered with topical or systemic immunosuppressive treatment and discontinuation of the DPP-4 inhibitor. Tell patients to report development of blisters or erosions while receiving TRADJENTA. If bullous pemphigoid is suspected, TRADJENTA should be discontinued and referral to a dermatologist should be considered for diagnosis and appropriate treatment.
Macrovascular OutcomesThere have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with TRADJENTA tablets.
Patient Counseling InformationAdvise the patient to read the FDA-approved patient labeling (Medication Guide)
Medication GuideInstruct patients to read the Medication Guide before starting TRADJENTA therapy and to reread it each time the prescription is renewed. Instruct patients to inform their doctor or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens.
Inform patients of the potential risks and benefits of TRADJENTA and of alternative modes of therapy. Also inform patients about the importance of adherence to dietary instructions, regular physical activity, periodic blood glucose monitoring and A1C testing, recognition and management of hypoglycemia and hyperglycemia, and assessment for diabetes complications. Advise patients to seek medical advice promptly during periods of stress such as fever, trauma, infection, or surgery, as medication requirements may change.
PancreatitisInform patients that acute pancreatitis has been reported during postmarketing use of TRADJENTA. Inform patients that persistent severe abdominal pain, sometimes radiating to the back, which may or may not be accompanied by vomiting, is the hallmark symptom of acute pancreatitis. Instruct patients to discontinue TRADJENTA promptly and contact their physician if persistent severe abdominal pain occurs.
Heart FailureInform patients of the signs and symptoms of heart failure. Before initiating TRADJENTA, patients should be asked about a history of heart failure or other risk factors for heart failure including moderate to severe renal impairment. Instruct patients to contact their healthcare provider as soon as possible if they experience symptoms of heart failure, including increasing shortness of breath, rapid increase in weight or swelling of the feet.
HypoglycemiaInform patients that the incidence of hypoglycemia is increased when TRADJENTA is added to a sulfonylurea or insulin and that a lower dose of the sulfonylurea or insulin may be required to reduce the risk of hypoglycemia.
Hypersensitivity ReactionsInform patients that serious allergic reactions, such as anaphylaxis, angioedema, and exfoliative skin conditions, have been reported during postmarketing use of TRADJENTA. If symptoms of allergic reactions (such as rash, skin flaking or peeling, urticaria, swelling of the skin, or swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing) occur, patients must stop taking TRADJENTA and seek medical advice promptly.
Severe And Disabling ArthralgiaInform patients that severe and disabling joint pain may occur with this class of drugs. The time to onset of symptoms can range from one day to years. Instruct patients to seek medical advice if severe joint pain occurs.
Bullous PemphigoidInform patients that bullous pemphigoid may occur with this class of drugs. Instruct patients to seek medical advice if blisters or erosions occur.
Missed DoseInstruct patients to take TRADJENTA only as prescribed. If a dose is missed, advise patients not to double their next dose.
Blood Glucose And A1C MonitoringInform patients that response to all diabetic therapies should be monitored by periodic measurements of blood glucose and A1C levels, with a goal of decreasing these levels toward the normal range. A1C monitoring is especially useful for evaluating long-term glycemic control.
Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of FertilityLinagliptin did not increase the incidence of tumors in male and female rats in a 2-year study at doses of 6, 18, and 60 mg/kg. The highest dose of 60 mg/kg is approximately 418 times the clinical dose of 5 mg/day based on AUC exposure. Linagliptin did not increase the incidence of tumors in mice in a 2-year study at doses up to 80 mg/kg (males) and 25 mg/kg (females), or approximately 35-and 270-times the clinical dose based on AUC exposure. Higher doses of linagliptin in female mice (80 mg/kg) increased the incidence of lymphoma at approximately 215-times the clinical dose based on AUC exposure.
Linagliptin was not mutagenic or clastogenic with or without metabolic activation in the Ames bacterial mutagenicity assay, a chromosomal aberration test in human lymphocytes, and an in vivo micronucleus assay.
In fertility studies in rats, linagliptin had no adverse effects on early embryonic development, mating, fertility, or bearing live young up to the highest dose of 240 mg/kg (approximately 943-times the clinical dose based on AUC exposure).
Use In Specific Populations Pregnancy Risk SummaryThe limited data with TRADJENTA use in pregnant women are not sufficient to inform of drug-associated risk for major birth defects and miscarriage. There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy [see Clinical Considerations].
In animal reproduction studies, no adverse developmental effects were observed when linagliptin was administered to pregnant rats during the period of organogenesis at doses similar to the maximum recommended clinical dose, based on exposure [see Data].
The estimated background risk of major birth defects is 6-10% in women with pre-gestational diabetes with a HbA1c>7 and has been reported to be as high as 20-25% in women with HbA1c>10. The estimated background risk of miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.
Clinical ConsiderationsDisease-associated Maternal and/or Embryo/Fetal Risk
Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, pre-eclampsia, and delivery complications. Poorly controlled diabetes increases the fetal risk for major birth defects, still birth, and macrosomia related morbidity.
DataAnimal Data
No adverse developmental outcome was observed when linagliptin was administered to pregnant Wistar Han rats and Himalayan rabbits during the period of organogenesis at doses up to 240 mg/kg and 150 mg/kg, respectively. These doses represent approximately 943 times (rats) and 1943 times (rabbits) the 5 mg clinical dose, based on exposure. No adverse functional, behavioral, or reproductive outcome was observed in offspring following administration of linagliptin to Wistar Han rats from gestation day 6 to lactation day 21 at a dose 49 times the 5 mg clinical dose, based on exposure.
Lactation Risk SummaryThere is no information regarding the presence of linagliptin in human milk, the effects on the breastfed infant, or the effects on milk production. However, linagliptin is present in rat milk. Therefore, the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for TRADJENTA and any potential adverse effects on the breastfed child from TRADJENTA or from the underlying maternal condition.
Pediatric UseSafety and effectiveness of TRADJENTA in pediatric patients under 18 years of age have not been established.
Geriatric UseThere were 4040 type 2 diabetes patients treated with linagliptin 5 mg from 15 clinical trials of TRADJENTA; 1085 (27%) were 65 years and over, while 131 (3%) were 75 years and over. Of these patients, 2566 were enrolled in 12 double-blind placebo-controlled studies; 591 (23%) were 65 years and over, while 82 (3%) were 75 years and over. No overall differences in safety or effectiveness were observed between patients 65 years and over and younger patients. Therefore, no dose adjustment is recommended in the elderly population. While clinical studies of linagliptin have not identified differences in response between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.
Renal ImpairmentNo dose adjustment is recommended for patients with renal impairment.
Hepatic ImpairmentNo dose adjustment is recommended for patients with hepatic impairment.
The recommended dose of TRADJENTA is 5 mg once daily.
TRADJENTA tablets can be taken with or without food.
Concomitant Use With An Insulin Secretagogue (e.g., Sulfonylurea) Or With InsulinWhen TRADJENTA is used in combination with an insulin secretagogue (e.g., sulfonylurea) or with insulin, a lower dose of the insulin secretagogue or insulin may be required to reduce the risk of hypoglycemia.
Linagliptin is a weak to moderate inhibitor of CYP isozyme CYP3A4, but does not inhibit other CYP isozymes and is not an inducer of CYP isozymes, including CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 4A11.
Linagliptin is a P-glycoprotein (P-gp) substrate, and inhibits P-gp mediated transport of digoxin at high concentrations. Based on these results and in vivo drug interaction studies, linagliptin is considered unlikely to cause interactions with other P-gp substrates at therapeutic concentrations.
In Vivo Assessment Of Drug InteractionsStrong inducers of CYP3A4 or P-gp (e.g., rifampin) decrease exposure to linagliptin to subtherapeutic and likely ineffective concentrations. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended. In vivo studies indicated evidence of a low propensity for causing drug interactions with substrates of CYP3A4, CYP2C9, CYP2C8, P-gp and organic cationic transporter (OCT). No dose adjustment of TRADJENTA is recommended based on results of the described pharmacokinetic studies.
Table 2: Effect of Coadministered Drugs on Systemic Exposure of Linagliptin
Coadministered Drug | Dosing of Coadministered Drug* | Dosing of Linagliptin* | Geometric Mean Ratio (ratio with/without coadministered drug) No effect=1.0 |
|
AUC† | Cmax | |||
No dosing adjustments required for linagliptin when given with the following coadministered drugs: | ||||
Metformin | 850 mg TID | 10 mg QD | 1.20 | 1.03 |
Glyburide | 1.75 mg# | 5 mg QD | 1.02 | 1.01 |
Pioglitazone | 45 mg QD | 10 mg QD | 1.13 | 1.07 |
Ritonavir | 200 mg BID | 5 mg# | 2.01 | 2.96 |
The efficacy of JENTADUETO XR may be reduced when administered in combination with strong inducers of CYP3A4 or P-gp (e.g., rifampin). Use of alternative treatments is strongly recommended. | ||||
Rifampin | 600 mg QD | 5 mg QD | 0.60 | 0.56 |
*Multiple dose (steady state) unless otherwise noted # Single dose †AUC = AUC(0 to 24 hours) for single-dose treatments and AUC = AUC(TAU) for multiple-dose treatments QD = once daily BID = twice daily TID = three times daily |
Table 3: Effect of Linagliptin on Systemic Exposure of Coadministered Drugs
Coadministered Drug | Dosing of Coadministered Drug* | Dosing of Linagliptin* | Geometric Mean Ratio (ratio with/without coadministered drug) No effect=1.0 |
||
AUC† | Cmax | ||||
No dosing adjustments required for the following coadministered drugs: | |||||
Metformin | 850 mg TID | 10 mg QD | metformin | 1.01 | 0.89 |
Glyburide | 1.75 mg# | 5 mg QD | glyburide | 0.86 | 0.86 |
Pioglitazone | 45 mg QD | 10 mg QD | pioglitazone | 0.94 | 0.86 |
metabolite M-III | 0.98 | 0.96 | |||
metabolite M-IV | 1.04 | 1.05 | |||
Digoxin | 0.25 mg QD | 5 mg QD | digoxin | 1.02 | 0.94 |
Simvastatin | 40 mg QD | 10 mg QD | simvastatin | 1.34 | 1.10 |
simvastatin acid | 1.33 | 1.21 | |||
Warfarin | 10 mg# | 5 mg QD | R-warfarin | 0.99 | 1.00 |
S-warfarin | 1.03 | 1.01 | |||
INR | 0.93** | 1.04** | |||
PT | 1.03** | 1.15** | |||
Ethinylestradiol and | ethinylestradiol 0.03 mg and | 5 mg QD | ethinylestradiol | 1.01 | 1.08 |
levonorgestrel | levonorgestrel 0.150 mg QD | levonorgestrel | 1.09 | 1.13 | |
* Multiple dose (steady state) unless otherwise noted # Single dose †AUC = AUC(INF) for single-dose treatments and AUC = AUC(TAU) for multiple-dose treatments **AUC=AUC(0-168) and Cmax=Emax for pharmacodynamic end points INR = International Normalized Ratio PT = Prothrombin Time QD = once daily TID = three times daily |