There is no known specific treatment for overdose with Selmivir. If overdose occurs, the patient should be monitored, and standard supportive treatment applied as required.
Abacavir: It is not known whether abacavir can be removed by peritoneal dialysis or hemodialysis.
Lamivudine: Because a negligible amount of lamivudine was removed via (4-hour) hemodialysis, continuous ambulatory peritoneal dialysis, and automated peritoneal dialysis, it is not known if continuous hemodialysis would provide clinical benefit in a lamivudine overdose event.
Selmivir is contraindicated in patients:
The following adverse reactions are discussed in other sections of the labeling:
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
Serious And Fatal Abacavir-Associated Hypersensitivity ReactionsIn clinical trials, serious and sometimes fatal hypersensitivity reactions have occurred with abacavir, a component of Selmivir. These reactions have been characterized by 2 or more of the following signs or symptoms: (1) fever; (2) rash; (3) gastrointestinal symptoms (including nausea, vomiting, diarrhea, or abdominal pain); (4) constitutional symptoms (including generalized malaise, fatigue, or achiness); (5) respiratory symptoms (including dyspnea, cough, or pharyngitis). Almost all abacavir hypersensitivity reactions include fever and/or rash as part of the syndrome.
Other signs and symptoms have included lethargy, headache, myalgia, edema, arthralgia, and paresthesia. Anaphylaxis, liver failure, renal failure, hypotension, adult respiratory distress syndrome, respiratory failure, myolysis, and death have occurred in association with these hypersensitivity reactions. Physical findings have included lymphadenopathy, mucous membrane lesions (conjunctivitis and mouth ulcerations), and maculopapular or urticarial rash (although some patients had other types of rashes and others did not have a rash). There were reports of erythema multiforme. Laboratory abnormalities included elevated liver chemistries, elevated creatine phosphokinase, elevated creatinine, and lymphopenia and abnormal chest x-ray findings (predominantly infiltrates, which were localized).
Additional Adverse Reactions With Use Of SelmivirTherapy-Naive Adults: Treatment-emergent clinical adverse reactions (rated by the investigator as moderate or severe) with greater than or equal to 5% frequency during therapy with ZIAGEN 600 mg once daily or ZIAGEN 300 mg twice daily, both in combination with lamivudine 300 mg once daily and efavirenz 600 mg once daily, are listed in Table 1.
Table 1: Treatment-Emergent (All Causality) Adverse Reactions of at Least Moderate Intensity (Grades 2-4, Greater than or Equal to 5% Frequency) in Therapy-Naive Adults (CNA30021) through 48 Weeks of Treatment
Adverse Event | ZIAGEN 600 mg q.d. plus EPIVIR plus Efavirenz (n = 384) | ZIAGEN 300 mg b.i.d. plus EPIVIR plus Efavirenz (n = 386) |
Drug hypersensitivitya, b | 9% | 7% |
Insomnia | 7% | 9% |
Depression/Depressed mood | 7% | 7% |
Headache/Migraine | 7% | 6% |
Fatigue/Malaise | 6% | 8% |
Dizziness/Vertigo | 6% | 6% |
Nausea | 5% | 6% |
Diarrheaa | 5% | 6% |
Rash | 5% | 5% |
Pyrexia | 5% | 3% |
Abdominal pain/gastritis | 4% | 5% |
Abnormal dreams | 4% | 5% |
Anxiety | 3% | 5% |
a Subjects receiving ZIAGEN 600 mg once daily, experienced a significantly higher incidence of severe drug hypersensitivity reactions and severe diarrhea compared with subjects who received ZIAGEN 300 mg twice daily. Five percent (5%) of subjects receiving ZIAGEN 600 mg once daily had severe drug hypersensitivity reactions compared with 2% of subjects receiving ZIAGEN 300 mg twice daily. Two percent (2%) of subjects receiving ZIAGEN 600 mg once daily had severe diarrhea while none of the subjects receiving ZIAGEN 300 mg twice daily had this event. b CNA30024 was a multi-center, double-blind, controlled trial in which 649 HIV-1-infected, therapy-naive adults were randomized and received either ZIAGEN (300 mg twice daily), EPIVIR (150 mg twice daily), and efavirenz (600 mg once daily); or zidovudine (300 mg twice daily), EPIVIR (150 mg twice daily), and efavirenz (600 mg once daily). CNA30024 used double-blind ascertainment of suspected hypersensitivity reactions. During the blinded portion of the trial, suspected hypersensitivity to abacavir was reported by investigators in 9% of 324 subjects in the abacavir group and 3% of 325 subjects in the zidovudine group. |
Laboratory Abnormalities: Laboratory abnormalities observed in clinical trials of ZIAGEN were anemia, neutropenia, liver function test abnormalities, and elevations of CPK, blood glucose, and triglycerides. Additional laboratory abnormalities observed in clinical trials of EPIVIR were thrombocytopenia and elevated levels of bilirubin, amylase, and lipase.
The frequencies of treatment-emergent laboratory abnormalities were comparable between treatment groups in CNA30021.
Other Adverse Events: In addition to adverse reactions listed above, other adverse events observed in the expanded access program for abacavir were pancreatitis and increased GGT.
Clinical Trials Experience In Pediatric SubjectsThe safety of once-daily compared with twice-daily dosing of abacavir and lamivudine, administered as either single products or as Selmivir, was assessed in the ARROW trial (n = 336). Primary safety assessment in the ARROW (COL105677) trial was based on Grade 3 and Grade 4 adverse events. The frequency of Grade 3 and 4 adverse events was similar among subjects randomized to once-daily dosing compared with subjects randomized to twice-daily dosing. One event of Grade 4 hepatitis in the once-daily cohort was considered as uncertain causality by the investigator and all other Grade 3 or 4 adverse events were considered not related by the investigator. No additional safety issues were identified in pediatric subjects receiving abacavir and lamivudine once-daily compared with historical data in adults.
Postmarketing ExperienceThe following adverse reactions have been identified during postmarketing use. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
AbacavirCardiovascular: Myocardial infarction.
Skin: Suspected Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported in patients receiving abacavir primarily in combination with medications known to be associated with SJS and TEN, respectively. Because of the overlap of clinical signs and symptoms between hypersensitivity to abacavir and SJS and TEN, and the possibility of multiple drug sensitivities in some patients, abacavir should be discontinued and not restarted in such cases. There have also been reports of erythema multiforme with abacavir use.
Abacavir And LamivudineBody as a Whole: Redistribution/accumulation of body fat.
Digestive: Stomatitis.
Endocrine and Metabolic: Hyperglycemia.
General: Weakness.
Hemic and Lymphatic: Aplastic anemia, anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly.
Hepatic: Lactic acidosis and hepatic steatosis , posttreatment exacerbations of hepatitis B.
Hypersensitivity: Sensitization reactions (including anaphylaxis), urticaria.
Musculoskeletal: Muscle weakness, CPK elevation, rhabdomyolysis.
Nervous: Paresthesia, peripheral neuropathy, seizures.
Respiratory: Abnormal breath sounds/wheezing.
Skin: Alopecia, erythema multiforme, Stevens-Johnson syndrome.
Selmivir, in combination with other antiretroviral agents, is indicated for the treatment of human immunodeficiency virus type 1 (HIV-1) infection.
In a single-dose, 3-way crossover bioavailability trial of 1 Selmivir tablet versus 2 ZIAGEN tablets (2 x 300 mg) and 2 EPIVIR tablets (2 x 150 mg) administered simultaneously in healthy subjects (n = 25), there was no difference in the extent of absorption, as measured by the area under the plasma concentration-time curve (AUC) and maximal peak concentration (Cmax), of each component.
Abacavir: Following oral administration, abacavir is rapidly absorbed and extensively distributed. After oral administration of a single dose of 600 mg of abacavir in 20 subjects, Cmax was 4.26 ± 1.19 mcg per mL (mean ± SD) and AUC∞was 11.95 ± 2.51 mcg•hour per mL. Binding of abacavir to human plasma proteins is approximately 50% and was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase to form the 5'-carboxylic acid and glucuronyl transferase to form the 5'-glucuronide.
Lamivudine: Following oral administration, lamivudine is rapidly absorbed and extensively distributed. After multiple-dose oral administration of lamivudine 300 mg once daily for 7 days to 60 healthy subjects, steady-state Cmax (Cmax,ss) was 2.04 ± 0.54 mcg per mL (mean ± SD) and the 24-hour steady-state AUC (AUC24,ss) was 8.87 ± 1.83 mcg•hour per mL. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours).
In humans, abacavir and lamivudine are not significantly metabolized by cytochrome P450 enzymes.
The pharmacokinetic properties of abacavir and lamivudine in fasting subjects are summarized in Table 2.
Table 2: Pharmacokinetic Parametersa for Abacavir and Lamivudine in Adults
Parameter | Abacavir | Lamivudine | ||
Oral bioavailability (%) | 86 ± 25 | n = 6 | 86 ± 16 | n = 12 |
Apparent volume of distribution (L/kg) | 0.86 ± 0.15 | n = 6 | 1.3 ± 0.4 | n = 20 |
Systemic clearance (L/h/kg) | 0.80 ± 0.24 | n = 6 | 0.33 ± 0.06 | n = 20 |
Renal clearance (L/h/kg) | 0.007 ± 0.008 | n = 6 | 0.22 ± 0.06 | n = 20 |
Elimination half-life (h) | 1.45 ± 0.32 | n = 20 | 5 to 7b | |
aData presented as mean ±standard deviation except where noted. bApproximate range. |
Selmivir may be administered with or without food. Administration with a high-fat meal in a single-dose bioavailability trial resulted in no change in AUClast, AUC∞, and Cmax for lamivudine. Food did not alter the extent of systemic exposure to abacavir (AUC∞), but the rate of absorption (Cmax) was decreased approximately 24% compared with fasted conditions (n = 25). These results are similar to those from previous trials of the effect of food on abacavir and lamivudine tablets administered separately.
Included as part of the PRECAUTIONS section.
PRECAUTIONS Hypersensitivity ReactionsSerious and sometimes fatal hypersensitivity reactions have occurred with abacavir, a component of Selmivir. These hypersensitivity reactions have included multi-organ failure and anaphylaxis and typically occurred within the first 6 weeks of treatment with abacavir (median time to onset was 9 days); although abacavir hypersensitivity reactions have occurred any time during treatment. Patients who carry the HLA-B*5701 allele are at a higher risk of abacavir hypersensitivity reactions; although, patients who do not carry the HLA-B*5701 allele have developed hypersensitivity reactions. Hypersensitivity to abacavir was reported in approximately 206 (8%) of 2,670 patients in 9 clinical trials with abacavir-containing products where HLA-B*5701 screening was not performed. The incidence of suspected abacavir hypersensitivity reactions in clinical trials was 1% when subjects carrying the HLA-B*5701 allele were excluded. In any patient treated with abacavir, the clinical diagnosis of hypersensitivity reaction must remain the basis of clinical decision making.
Due to the potential for severe, serious, and possibly fatal hypersensitivity reactions with abacavir:
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues and other antiretrovirals. See full prescribing information for ZIAGEN (abacavir) and EPIVIR (lamivudine). Treatment with Selmivir should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).
Patients With Hepatitis B Virus Co-infection Posttreatment Exacerbations of HepatitisClinical and laboratory evidence of exacerbations of hepatitis have occurred after discontinuation of lamivudine. See full prescribing information for EPIVIR (lamivudine). Patients should be closely monitored with both clinical and laboratory follow-up for at least several months after stopping treatment.
Emergence of Lamivudine-resistant HBVSafety and efficacy of lamivudine have not been established for treatment of chronic hepatitis B in subjects dually infected with HIV-1 and HBV. Emergence of hepatitis B virus variants associated with resistance to lamivudine has been reported in HIV-1-infected subjects who have received lamivudine-containing antiretroviral regimens in the presence of concurrent infection with hepatitis B virus. See full prescribing information for EPIVIR (lamivudine).
Use With Interferon-And Ribavirin-Based RegimensPatients receiving interferon alfa with or without ribavirin and Selmivir should be closely monitored for treatment-associated toxicities, especially hepatic decompensation. See full prescribing information for EPIVIR (lamivudine). Discontinuation of Selmivir should be considered as medically appropriate. Dose reduction or discontinuation of interferon alfa, ribavirin, or both should also be considered if worsening clinical toxicities are observed, including hepatic decompensation (e.g., Child-Pugh greater than 6) (see full prescribing information for interferon and ribavirin).
Immune Reconstitution SyndromeImmune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including Selmivir. During the initial phase of combination antiretroviral treatment, patients whose immune systems respond may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jirovecii pneumonia [PCP], or tuberculosis), which may necessitate further evaluation and treatment.
Autoimmune disorders (such as Graves' disease, polymyositis, and Guillain-Barré syndrome) have also been reported to occur in the setting of immune reconstitution; however, the time to onset is more variable, and can occur many months after initiation of treatment.
Fat RedistributionRedistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and “cushingoid appearance” have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established.
Myocardial InfarctionIn a published prospective, observational, epidemiological trial designed to investigate the rate of myocardial infarction (MI) in patients on combination antiretroviral therapy, the use of abacavir within the previous 6 months was correlated with an increased risk of MI. In a sponsor-conducted pooled analysis of clinical trials, no excess risk of MI was observed in abacavir-treated subjects as compared with control subjects. In totality, the available data from the observational cohort and from clinical trials are inconclusive.
As a precaution, the underlying risk of coronary heart disease should be considered when prescribing antiretroviral therapies, including abacavir, and action taken to minimize all modifiable risk factors (e.g., hypertension, hyperlipidemia, diabetes mellitus, smoking).
Related Products That Are Not RecommendedSelmivir contains fixed doses of 2 nucleoside analogue reverse transcriptase inhibitors (abacavir and lamivudine); concomitant administration of Selmivir with other products containing abacavir or lamivudine is not recommended. In addition, do not administer Selmivir in combination with products containing emtricitabine.
Patient Counseling InformationAdvise the patient to read the FDA-approved patient labeling (Medication Guide).
Hypersensitivity ReactionsInform patients:
Inform patients that they should not take Selmivir with ATRIPLA®, COMBIVIR®, COMPLERA®, DUTREBIS™, EMTRIVA®, EPIVIR, EPIVIR-HBV®, STRIBILD®, TRIUMEQ®, TRIZIVIR, TRUVADA®, or ZIAGEN.
Lactic Acidosis/HepatomegalyInform patients that some HIV medicines, including Selmivir, can cause a rare, but serious condition called lactic acidosis with liver enlargement (hepatomegaly).
Patients with Hepatitis B or C Co-infectionAdvise patients co-infected with HIV-1 and HBV that worsening of liver disease has occurred in some cases when treatment with lamivudine was discontinued. Advise patients to discuss any changes in regimen with their physician.
Inform patients with HIV-1/HCV co-infection that hepatic decompensation (some fatal) has occurred in HIV-1/HCV co-infected patients receiving combination antiretroviral therapy for HIV-1 and interferon alfa with or without ribavirin.
Immune Reconstitution SyndromeIn some patients with advanced HIV infection, signs and symptoms of inflammation from previous infections may occur soon after anti-HIV treatment is started. It is believed that these symptoms are due to an improvement in the body's immune response, enabling the body to fight infections that may have been present with no obvious symptoms. Advise patients to inform their healthcare provider immediately of any symptoms of infection.
Redistribution/Accumulation of Body FatInform patients that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy and that the cause and long-term health effects of these conditions are not known at this time.
Information about HIV-1 InfectionSelmivir is not a cure for HIV-1 infection and patients may continue to experience illnesses associated with HIV-1 infection, including opportunistic infections. Patients must remain on continuous HIV therapy to control HIV-1 infection and decrease HIV-related illness. Inform patients that sustained decreases in plasma HIV-1 RNA have been associated with a reduced risk of progression to AIDS and death.
Advise patients to remain under the care of a physician when using Selmivir.
Advise patients to take all HIV medications exactly as prescribed.
Advise patients to avoid doing things that can spread HIV-1 infection to others. Advise patients not to re-use or share needles or other injection equipment. Advise patients not to share personal items that can have blood or body fluids on them, like
toothbrushes and razor blades. Advise patients to always practice safer sex by using a latex or polyurethane condom to lower the chance of sexual contact with semen, vaginal secretions, or blood.
Female patients should be advised not to breastfeed. Mothers with HIV-1 should not breastfeed because HIV-1 can be passed to the baby in the breast milk.
Instruct patients to read the Medication Guide before starting Selmivir and to reread it each time the prescription is renewed. Instruct patients to inform their physician or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens.
Instruct patients that if they miss a dose, they should take it as soon as they remember. If they do not remember until it is time for the next dose, they should be instructed to skip the missed dose and go back to the regular schedule. Patients should not double their next dose or take more than the prescribed dose.
Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of Fertility CarcinogenicityAbacavir: Abacavir was administered orally at 3 dosage levels to separate groups of mice and rats in 2-year carcinogenicity studies. Results showed an increase in the incidence of malignant and non-malignant tumors. Malignant tumors occurred in the preputial gland of males and the clitoral gland of females of both species, and in the liver of female rats. In addition, non-malignant tumors also occurred in the liver and thyroid gland of female rats. These observations were made at systemic exposures in the range of 6 to 32 times the human exposure at the recommended dose of 600 mg.
Lamivudine: Long-term carcinogenicity studies with lamivudine in mice and rats showed no evidence of carcinogenic potential at exposures up to 10 times (mice) and 58 times (rats) the human exposures at the recommended dose of 300 mg.
MutagenicityAbacavir: Abacavir induced chromosomal aberrations both in the presence and absence of metabolic activation in an in vitro cytogenetic study in human lymphocytes. Abacavir was mutagenic in the absence of metabolic activation, although it was not mutagenic in the presence of metabolic activation in an L5178Y mouse lymphoma assay. Abacavir was clastogenic in males and not clastogenic in females in an in vivo mouse bone marrow micronucleus assay. Abacavir was not mutagenic in bacterial mutagenicity assays in the presence and absence of metabolic activation.
Lamivudine: Lamivudine was mutagenic in an L5178Y mouse lymphoma assay and clastogenic in a cytogenetic assay using cultured human lymphocytes. Lamivudine was not mutagenic in a microbial mutagenicity assay, in an in vitro cell transformation assay, in a rat micronucleus test, in a rat bone marrow cytogenetic assay, and in an assay for unscheduled DNA synthesis in rat liver.
Impairment of FertilityAbacavir or lamivudine did not affect male or female fertility in rats at a dose associated with exposures approximately 8 or 130 times, respectively, higher than the exposures in humans at the doses of 600 mg and 300 mg (respectively).
Use In Specific Populations Pregnancy Pregnancy Exposure RegistryThere is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to Selmivir during pregnancy. Physicians are encouraged to register patients by calling the Antiretroviral Pregnancy Registry at 1-800-258-4263.
Risk SummaryAvailable data from the Antiretroviral Pregnancy Registry show no difference in the risk of overall major birth defects for abacavir or lamivudine compared with the background rate for major birth defects of 2.7% in the US reference population of the Metropolitan Atlanta Congenital Defects Program (MACDP). Abacavir produced fetal malformations and other embryonic and fetal toxicities in rats at 35 times the human exposure at the recommended clinical dose. Lamivudine produced embryonic toxicity in rabbits at a dose that produced similar human exposures to the recommended clinical dose. The relevance of animal findings to human pregnancy registry data is not known.
DataHuman Data: Abacavir: Based on prospective reports from the Antiretroviral Pregnancy Registry of over 2,000 exposures to abacavir during pregnancy resulting in live births (including over 900 exposed in the first trimester), there was no difference between abacavir and overall birth defects compared with the background birth defect rate of 2.7% in the US reference population of the MACDP. The prevalence of defects in the first trimester was 3.0% (95% CI: 2.0% to 4.4%).
Lamivudine: Based on prospective reports from the Antiretroviral Pregnancy Registry of over 11,000 exposures to lamivudine during pregnancy resulting in live births (including over 4,300 exposed in the first trimester), there was no difference between lamivudine and overall birth defects compared with the background birth defect rate of 2.7% in the U.S. reference population of the MACDP. The prevalence of defects in the first trimester was 3.1% (95% CI: 2.6% to 3.7%).
Lamivudine pharmacokinetics were studied in pregnant women during 2 clinical trials conducted in South Africa. The trials assessed pharmacokinetics in 16 women at 36 weeks gestation using 150 mg lamivudine twice daily with zidovudine, 10 women at 38 weeks gestation using 150 mg lamivudine twice daily with zidovudine, and 10 women at 38 weeks gestation using lamivudine 300 mg twice daily without other antiretrovirals. These trials were not designed or powered to provide efficacy information. Lamivudine pharmacokinetics in pregnant women were similar to those seen in non-pregnant adults and in postpartum women. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. In a subset of subjects, amniotic fluid specimens were collected following natural rupture of membranes and confirmed that lamivudine crosses the placenta in humans. Amniotic fluid concentrations of lamivudine were typically 2 times greater than maternal serum levels and ranged from 1.2 to 2.5 mcg per mL (150 mg twice daily) and 2.1 to 5.2 mcg per mL (300 mg twice daily).
Animal Data: Abacavir: Studies in pregnant rats showed that abacavir is transferred to the fetus through the placenta. Fetal malformations (increased incidences of fetal anasarca and skeletal malformations) and developmental toxicity (depressed fetal body weight and reduced crown-rump length) were observed in rats at a dose which produced 35 times the human exposure, based on AUC. Embryonic and fetal toxicities (increased resorptions, decreased fetal body weights) and toxicities to the offspring (increased incidence of stillbirth and lower body weights) occurred at half of the above-mentioned dose in separate fertility studies conducted in rats. In the rabbit, no developmental toxicity and no increases in fetal malformations occurred at doses that produced 8.5 times the human exposure at the recommended dose based on AUC.
Lamivudine: Studies in pregnant rats showed that lamivudine is transferred to the fetus through the placenta. Reproduction studies with orally administered lamivudine have been performed in rats and rabbits at doses producing plasma levels up to approximately 35 times that for the recommended adult HIV dose. No evidence of teratogenicity due to lamivudine was observed. Evidence of early embryolethality was seen in the rabbit at exposure levels similar to those observed in humans, but there was no indication of this effect in the rat at exposure levels up to 35 times those in humans.
LactationThe Centers for Disease Control and Prevention recommend that HIV-1-infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection.
Because of the potential for HIV-1 transmission mothers should be instructed not to breastfeed.
Pediatric UseThe dosing recommendations in this population are based on the safety and efficacy established in a controlled trial conducted using either the combination of EPIVIR and ZIAGEN or Selmivir.
In pediatric patients weighing less than 25 kg, use of abacavir and lamivudine as single products is recommended to achieve appropriate dosing.
Geriatric UseClinical trials of abacavir and lamivudine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, caution should be exercised in the administration of Selmivir in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Patients With Impaired Renal FunctionSelmivir is not recommended for patients with creatinine clearance less than 50 mL per min because Selmivir is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of lamivudine, a component of Selmivir, is required for patients with creatinine clearance less than 50 mL per min, then the individual components should be used.
Patients With Impaired Hepatic FunctionSelmivir is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of abacavir, a component of Selmivir, is required for patients with mild hepatic impairment (Child-Pugh Class A), then the individual components should be used.
The safety, efficacy, and pharmacokinetic properties of abacavir have not been established in patients with moderate (Child-Pugh Class B) or severe (Child-Pugh Class C) hepatic impairment; therefore, Selmivir is contraindicated in these patients.
Screen for the HLA-B*5701 allele prior to initiating therapy with Selmivir.
Recommended Dosage For Adult PatientsThe recommended dosage of Selmivir for adults is one tablet taken orally once daily, in combination with other antiretroviral agents, with or without food.
Recommended Dosage For Pediatric PatientsThe recommended oral dose of Selmivir for pediatric patients weighing at least 25 kg is one tablet daily in combination with other antiretroviral agents. Before prescribing Selmivir tablets, pediatric patients should be assessed for the ability to swallow tablets.
Not Recommended Due To Lack of Dosage AdjustmentBecause Selmivir is a fixed-dose tablet and cannot be dose adjusted, Selmivir is not recommended for:
Use of EPIVIR® (lamivudine) oral solution or tablets and ZIAGEN® (abacavir) oral solution may be considered.