There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Hemodialysis does not significantly enhance clearance of rosuvastatin.
Rostor is contraindicated in the following conditions:
The following serious adverse reactions are discussed in greater detail in other sections of the label:
Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in clinical practice.
In the Rostor controlled clinical trials database (placebo or active-controlled) of 5394 patients with a mean treatment duration of 15 weeks, 1.4% of patients discontinued due to adverse reactions. The most common adverse reactions that led to treatment discontinuation were:
The most commonly reported adverse reactions (incidence ≥ 2%) in the Rostor controlled clinical trial database of 5394 patients were:
Adverse reactions reported in ≥ 2% of patients in placebo-controlled clinical studies and at a rate greater than placebo are shown in Table 1. These studies had a treatment duration of up to 12 weeks.
Table 1: Adverse Reactions Reported in ≥ 2% of Patients Treated with Rostor and > Placebo in Placebo-Controlled Trials (% of Patients )
Adverse Reactions | Rostor 5 mg N=291 | Rostor 10 mg N=283 | Rostor 20 mg N=64 | Rostor 40 mg N=106 | Total Rostor 5 mg D40 mg N=744 | Placebo N=382 |
Headache | 5.5 | 4.9 | 3.1 | 8.5 | 5.5 | 5.0 |
Nausea | 3.8 | 3.5 | 6.3 | 0 | 3.4 | 3.1 |
Myalgia | 3.1 | 2.1 | 6.3 | 1.9 | 2.8 | 1.3 |
Asthenia | 2.4 | 3.2 | 4.7 | 0.9 | 2.7 | 2.6 |
Constipation | 2.1 | 2.1 | 4.7 | 2.8 | 2.4 | 2.4 |
*Adverse reactions by COSTART preferred term. |
Other adverse reactions reported in clinical studies were abdominal pain, dizziness, hypersensitivity (including rash, pruritus, urticaria, and angioedema) and pancreatitis. The following laboratory abnormalities have also been reported: dipstick-positive proteinuria and microscopic hematuria ; elevated creatine phosphokinase, transaminases, glucose, glutamyl transpeptidase, alkaline phosphatase, and bilirubin; and thyroid function abnormalities.
In the METEOR study, involving 981 participants treated with rosuvastatin 40 mg (n=700) or placebo (n=281) with a mean treatment duration of 1.7 years, 5.6% of subjects treated with Rostor versus 2.8% of placebo-treated subjects discontinued due to adverse reactions. The most common adverse reactions that led to treatment discontinuation were: myalgia, hepatic enzyme increased, headache, and nausea.
Adverse reactions reported in ≥ 2% of patients and at a rate greater than placebo are shown in Table 2.
Table 2: Adverse Reactions Reported in ≥ 2% of Patients Treated with Rostor and > Placebo in the METEOR Trial (% of Patients )
Adverse Reactions | Rostor 40 mg N=700 | Placebo N=281 |
Myalgia | 12.7 | 12.1 |
Arthralgia | 10.1 | 7.1 |
Headache | 6.4 | 5.3 |
Dizziness | 4.0 | 2.8 |
Increased CPK | 2.6 | 0.7 |
Abdominal pain | 2.4 | 1.8 |
ALT > 3x ULN† | 2.2 | 0.7 |
*Adverse reactions by MedDRA preferred term. †Frequency recorded as abnormal laboratory value |
In the JUPITER study, 17,802 participants were treated with rosuvastatin 20 mg (n=8901) or placebo (n=8901) for a mean duration of 2 years. A higher percentage of rosuvastatin-treated patients versus placebo-treated patients, 6.6% and 6.2%, respectively, discontinued study medication due to an adverse event, irrespective of treatment causality. Myalgia was the most common adverse reaction that led to treatment discontinuation.
In JUPITER, there was a significantly higher frequency of diabetes mellitus reported in patients taking rosuvastatin (2.8%) versus patients taking placebo (2.3%). Mean HbA1c was significantly increased by 0.1% in rosuvastatin-treated patients compared to placebo-treated patients. The number of patients with a HbA1c > 6.5% at the end of the trial was significantly higher in rosuvastatin-treated versus placebotreated patients.
Adverse reactions reported in ≥ 2% of patients and at a rate greater than placebo are shown in Table 3.
Table 3: Adverse Reactions* Reported in ≥ 2% of Patients Treated with Rostor and > Placebo in the JUPITER Trial (% of Patients )
Adverse Reactions | Rostor 20 mg N=8901 | Placebo N=8901 |
Myalgia | 7.6 | 6.6 |
Arthralgia | 3.8 | 3.2 |
Constipation | 3.3 | 3.0 |
Diabetes mellitus | 2.8 | 2.3 |
Nausea | 2.4 | 2.3 |
* Treatment-emergent adverse reactions by MedDRA preferred term. |
In a 12-week controlled study in boys and postmenarcheal girls 10 to 17 years of age with heterozygous familial hypercholesterolemia with Rostor 5 to 20 mg daily , elevations in serum creatine phosphokinase (CK) > 10 x ULN were observed more frequently in rosuvastatin compared with placebo-treated children. Four of 130 (3%) children treated with rosuvastatin (2 treated with 10 mg and 2 treated with 20 mg) had increased CK > 10 x ULN, compared to 0 of 46 children on placebo.
Postmarketing ExperienceThe following adverse reactions have been identified during postapproval use of Rostor: arthralgia, fatal and non-fatal hepatic failure, hepatitis, jaundice, thrombocytopenia, depression, sleep disorders (including insomnia and nightmares), peripheral neuropathy and gynecomastia. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
There have been rare reports of immune-mediated necrotizing myopathy associated with statin use.
There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).
Sections or subsections omitted from the full prescribing information are not listed. Rostor is indicated as adjunctive therapy to diet to reduce elevated Total-C, LDL-C, ApoB, nonHDLC, and triglycerides and to increase HDL-C in adult patients with primary hyperlipidemia or mixed dyslipidemia. Lipid-altering agents should be used in addition to a diet restricted in saturated fat and cholesterol when response to diet and nonpharmacological interventions alone has been inadequate.
Pediatric Patients With Familial HypercholesterolemiaRostor is indicated as an adjunct to diet to:
Rostor is indicated as adjunctive therapy to diet for the treatment of adult patients with hypertriglyceridemia.
Primary Dysbetalipoproteinemia (Type III Hyperlipoproteinemia)Rostor is indicated as an adjunct to diet for the treatment of adult patients with primary dysbetalipoproteinemia (Type III Hyperlipoproteinemia).
Adult Patients With Homozygous Familial HypercholesterolemiaRostor is indicated as adjunctive therapy to other lipid-lowering treatments (e.g., LDL apheresis) or alone if such treatments are unavailable to reduce LDLC, TotalC, and ApoB in adult patients with homozygous familial hypercholesterolemia.
Slowing Of The Progression Of AtherosclerosisRostor is indicated as adjunctive therapy to diet to slow the progression of atherosclerosis in adult patients as part of a treatment strategy to lower TotalC and LDLC to target levels.
Primary Prevention Of Cardiovascular DiseaseIn individuals without clinically evident coronary heart disease but with an increased risk of cardiovascular disease based on age ≥ 50 years old in men and ≥ 60 years old in women, hsCRP ≥ 2 mg/L, and the presence of at least one additional cardiovascular disease risk factor such as hypertension, low HDLC, smoking, or a family history of premature coronary heart disease, Rostor is indicated to:
Rostor has not been studied in Fredrickson Type I and V dyslipidemias.
In clinical pharmacology studies in man, peak plasma concentrations of rosuvastatin were reached 3 to 5 hours following oral dosing. Both Cmax and AUC increased in approximate proportion to Rostor dose. The absolute bioavailability of rosuvastatin is approximately 20%.
Administration of Rostor with food did not affect the AUC of rosuvastatin.
The AUC of rosuvastatin does not differ following evening or morning drug administration.
DistributionMean volume of distribution at steady-state of rosuvastatin is approximately 134 liters. Rosuvastatin is 88% bound to plasma proteins, mostly albumin. This binding is reversible and independent of plasma concentrations.
MetabolismRosuvastatin is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. The major metabolite is N-desmethyl rosuvastatin, which is formed principally by cytochrome P450 \ 2C9, and in vitro studies have demonstrated that N-desmethyl rosuvastatin has approximately one-sixth to one-half the HMGCoA reductase inhibitory activity of the parent compound. Overall, greater than 90% of active plasma HMGCoA reductase inhibitory activity is accounted for by the parent compound.
ExcretionFollowing oral administration, rosuvastatin and its metabolites are primarily excreted in the feces (90%). The elimination half-life (t½) of rosuvastatin is approximately 19 hours.
After an intravenous dose, approximately 28% of total body clearance was via the renal route, and 72% by the hepatic route.
Included as part of the PRECAUTIONS section.
PRECAUTIONS Skeletal Muscle EffectsCases of myopathy and rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with HMG-CoA reductase inhibitors , including Rostor. These risks can occur at any dose level, but are increased at the highest dose (40 mg).
Rostor should be prescribed with caution in patients with predisposing factors for myopathy (e.g., age ≥ 65 years, inadequately treated hypothyroidism, renal impairment).
The risk of myopathy during treatment with Rostor may be increased with concurrent administration of some other lipid-lowering therapies (fibrates or niacin), gemfibrozil, cyclosporine, atazanavir/ritonavir, lopinavir/ritonavir, or simeprevir. Cases of myopathy, including rhabdomyolysis, have been reported with HMG-CoA reductase inhibitors, including rosuvastatin, coadministered with colchicine, and caution should be exercised when prescribing Rostor with colchicine.
Rostor therapy should be discontinued if markedly elevated creatine kinase levels occur or myopathy is diagnosed or suspected. Rostor therapy should also be temporarily withheld in any patient with an acute, serious condition suggestive of myopathy or predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., sepsis, hypotension, dehydration, major surgery, trauma, severe metabolic, endocrine, and electrolyte disorders, or uncontrolled seizures).
There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.
All patients should be advised to promptly report to their physician unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing Rostor.
Liver Enzyme AbnormalitiesIt is recommended that liver enzyme tests be performed before the initiation of Rostor, and if signs or symptoms of liver injury occur.
Increases in serum transaminases [AST (SGOT) or ALT (SGPT)] have been reported with HMGCoA reductase inhibitors, including Rostor. In most cases, the elevations were transient and resolved or improved on continued therapy or after a brief interruption in therapy. There were two cases of jaundice, for which a relationship to Rostor therapy could not be determined, which resolved after discontinuation of therapy. There were no cases of liver failure or irreversible liver disease in these trials.
In a pooled analysis of placebo-controlled trials, increases in serum transaminases to > 3 times the upper limit of normal occurred in 1.1% of patients taking Rostor versus 0.5% of patients treated with placebo.
There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including rosuvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with Rostor, promptly interrupt therapy. If an alternate etiology is not found, do not restart Rostor.
Rostor should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of chronic liver disease. Active liver disease, which may include unexplained persistent transaminase elevations, is a contraindication to the use of Rostor.
Concomitant Coumarin AnticoagulantsCaution should be exercised when anticoagulants are given in conjunction with Rostor because of its potentiation of the effect of coumarin-type anticoagulants in prolonging the prothrombin time/INR. In patients taking coumarin anticoagulants and Rostor concomitantly, INR should be determined before starting Rostor and frequently enough during early therapy to ensure that no significant alteration of INR occurs.
Proteinuria And HematuriaIn the Rostor clinical trial program, dipstick-positive proteinuria and microscopic hematuria were observed among Rostor treated patients. These findings were more frequent in patients taking Rostor 40 mg, when compared to lower doses of Rostor or comparator HMGCoA reductase inhibitors, though it was generally transient and was not associated with worsening renal function. Although the clinical significance of this finding is unknown, a dose reduction should be considered for patients on Rostor therapy with unexplained persistent proteinuria and/or hematuria during routine urinalysis testing.
Endocrine EffectsIncreases in HbA1c and fasting serum glucose levels have been reported with HMGCoA reductase inhibitors, including Rostor. Based on clinical trial data with Rostor, in some instances these increases may exceed the threshold for the diagnosis of diabetes mellitus.
Although clinical studies have shown that Rostor alone does not reduce basal plasma cortisol concentration or impair adrenal reserve, caution should be exercised if Rostor is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones such as ketoconazole, spironolactone, and cimetidine.
Patient Counseling InformationAdvise the patient to read the FDA-approved patient labeling (PATIENT INFORMATION).
Patients should be instructed not to take 2 doses of Rostor within 12 hours of each other.
Skeletal Muscle EffectsPatients should be advised to report promptly unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing Rostor.
Concomitant Use Of AntacidsWhen taking Rostor with an aluminum and magnesium hydroxide combination antacid, the antacid should be taken at least 2 hours after Rostor administration.
Embryofetal ToxicityAdvise females of reproductive potential of the risk to a fetus, to use effective contraception during treatment, and to inform their healthcare provider of a known or suspected pregnancy.
LactationAdvise women not to breastfeed during treatment with Rostor.
Liver EnzymesIt is recommended that liver enzyme tests be performed before the initiation of Rostor and if signs or symptoms of liver injury occur. All patients treated with Rostor should be advised to promptly report any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice.
Nonclinical Toxicology Carcinogenesis Mutagenesis, Impairment Of FertilityIn a 104-week carcinogenicity study in rats at dose levels of 2, 20, 60, or 80 mg/kg/day by oral gavage, the incidence of uterine stromal polyps was significantly increased in females at 80 mg/kg/day at systemic exposure 20 times the human exposure at 40 mg/day based on AUC. Increased incidence of polyps was not seen at lower doses.
In a 107-week carcinogenicity study in mice given 10, 60, or 200 mg/kg/day by oral gavage, an increased incidence of hepatocellular adenoma/carcinoma was observed at 200 mg/kg/day at systemic exposures 20 times the human exposure at 40 mg/day based on AUC. An increased incidence of hepatocellular tumors was not seen at lower doses.
Rosuvastatin was not mutagenic or clastogenic with or without metabolic activation in the Ames test with Salmonella typhimurium and Escherichia coli, the mouse lymphoma assay, and the chromosomal aberration assay in Chinese hamster lung cells. Rosuvastatin was negative in the in vivo mouse micronucleus test.
In rat fertility studies with oral gavage doses of 5, 15, 50 mg/kg/day, males were treated for 9 weeks prior to and throughout mating and females were treated 2 weeks prior to mating and throughout mating until gestation day 7. No adverse effect on fertility was observed at 50 mg/kg/day (systemic exposures up to 10 times the human exposure at 40 mg/day based on AUC). In testicles of dogs treated with rosuvastatin at 30 mg/kg/day for one month, spermatidic giant cells were seen. Spermatidic giant cells were observed in monkeys after 6month treatment at 30 mg/kg/day in addition to vacuolation of seminiferous tubular epithelium. Exposures in the dog were 20 times and in the monkey 10 times the human exposure at 40 mg/day based on body surface area. Similar findings have been seen with other drugs in this class.
Use In Specific Populations Pregnancy Risk SummaryRostor is contraindicated for use in pregnant women since safety in pregnant women has not been established and there is no apparent benefit to therapy with Rostor during pregnancy. Because HMG-CoA reductase inhibitors decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, Rostor may cause fetal harm when administered to pregnant women. Rostor should be discontinued as soon as pregnancy is recognized. Limited published data on the use of rosuvastatin are insufficient to determine a drug-associated risk of major congenital malformations or miscarriage. In animal reproduction studies, there were no adverse developmental effects with oral administration of rosuvastatin during organogenesis at systemic exposures equivalent to a maximum recommended human dose (MRHD) of 40 mg/day in rats or rabbits (based on AUC and body surface area, respectively). In rats and rabbits, decreased pup/fetal survival occurred at 12 times and equivalent, respectively, to the MRHD of 40 mg/day.
The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.
DataHuman Data
Limited published data on rosuvastatin have not shown an increased risk of major congenital malformations or miscarriage. Rare reports of congenital anomalies have been received following intrauterine exposure to other statins. In a review of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or lovastatin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed what would be expected in the general population. The number of cases is adequate to exclude a ≥ 3 to 4-fold increase in congenital anomalies over the background incidence. In 89% of the prospectively followed pregnancies, drug treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified.
Animal Data
Rosuvastatin crosses the placenta in rats and rabbits and is found in fetal tissue and amniotic fluid at 3% and 20%, respectively, of the maternal plasma concentration following a single 25 mg/kg oral gavage dose on gestation day 16 in rats. A higher fetal tissue distribution (25% maternal plasma concentration) was observed in rabbits after a single oral gavage dose of 1 mg/kg on gestation day 18.
Rosuvastatin administration did not indicate a teratogenic effect in rats at ≤ 25 mg/kg/day or in rabbits ≤ 3 mg/kg/day (doses equivalent to the MRHD of 40 mg/day based on AUC and body surface area, respectively).
In female rats given 5, 15 and 50 mg/kg/day before mating and continuing through to gestation day 7 resulted in decreased fetal body weight (female pups) and delayed ossification at 50 mg/kg/day (10 times the human exposure at the MRHD dose of 40 mg/day based on AUC).
In pregnant rats given 2, 10 and 50 mg/kg/day of rosuvastatin from gestation day 7 through lactation day 21 (weaning), decreased pup survival occurred at 50 mg/kg/day (dose equivalent to 12 times the MRHD of 40 mg/day based body surface area).
In pregnant rabbits given 0.3, 1, and 3 mg/kg/day of rosuvastatin from gestation day 6 to day 18, decreased fetal viability and maternal mortality was observed at 3 mg/kg/day (dose equivalent to the MRHD of 40 mg/day based on body surface area).
Lactation Risk SummaryRosuvastatin use is contraindicated during breastfeeding. Limited data indicate that Rostor is present in human milk. There is no available information on the effects of the drug on the breastfed infant or the effects of the drug on milk production. Because of the potential for serious adverse reactions in a breastfed infant, advise patients that breastfeeding is not recommended during treatment with Rostor.
Females And Males Of Reproductive Potential ContraceptionRostor may cause fetal harm when administered to a pregnant woman. Advise females of reproductive potential to use effective contraception during treatment with Rostor.
Pediatric UseIn children and adolescents 8 to 17 years of age with heterozygous familial hypercholesterolemia, the safety and effectiveness of Rostor as an adjunct to diet to reduce total cholesterol, LDL-C, and ApoB levels when, after an adequate trial of diet therapy, LDL-C exceeds 190 mg/dL or when LDL-C exceeds 160 mg/dL and there is a positive family history of premature CVD or two or more other CVD risk factors, were established in one controlled trial and in one open-label, uncontrolled trial. The long-term efficacy of Rostor therapy initiated in childhood to reduce morbidity and mortality in adulthood has not been established.
The safety and effectiveness of Rostor in children and adolescents 10 to 17 years of age with heterozygous familial hypercholesterolemia were evaluated in a controlled clinical trial of 12 weeks duration followed by 40 weeks of open-label exposure. Patients treated with 5 mg, 10 mg, and 20 mg daily Rostor had an adverse experience profile generally similar to that of patients treated with placebo. There was no detectable effect of Rostor on growth, weight, BMI (body mass index), or sexual maturation in children and adolescents (10 to 17 years of age).
Rostor has not been studied in controlled clinical trials involving prepubertal patients or patients younger than 10 years of age with heterozygous familial hypercholesterolemia. However, the safety and effectiveness of Rostor were evaluated in a two year open-label uncontrolled trial that included children and adolescents 8 to 17 years of age with heterozygous familial hypercholesterolemia. The safety and efficacy of Rostor in lowering LDL-C appeared generally consistent with that observed for adult patients, despite limitations of the uncontrolled study design.
Children and adolescents 7 to 15 years of age with homozygous familial hypercholesterolemia were studied in a 6-week randomized, placebo-controlled, cross-over study with Rostor 20 mg once daily followed by 12 weeks of open-label treatment. In general, the safety profile in this trial was consistent with that of the previously established safety profile in adults.
Although not all adverse reactions identified in the adult population have been observed in clinical trials of children and adolescent patients, the same warnings and precautions for adults should be considered for children and adolescents. Adolescent females should be counseled on appropriate contraceptive methods while on Rostor therapy.
Geriatric UseOf the 10,275 patients in clinical studies with Rostor, 3159 (31%) were 65 years and older, and 698 (6.8%) were 75 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
Elderly patients are at higher risk of myopathy and Rostor should be prescribed with caution in the elderly.
Renal ImpairmentRosuvastatin exposure is not influenced by mild to moderate renal impairment (CLcr ≥ 30 mL/min/1.73 m²). Exposure to rosuvastatin is increased to a clinically significant extent in patients with severe renal impairment (CLcr < 30 mL/min/1.73 m²) who are not receiving hemodialysis and dose adjustment is required.
Hepatic ImpairmentRostor is contraindicated in patients with active liver disease, which may include unexplained persistent elevations of hepatic transaminase levels. Chronic alcohol liver disease is known to increase rosuvastatin exposure; Rostor should be used with caution in these patients.
Asian PatientsPharmacokinetic studies have demonstrated an approximate 2-fold increase in median exposure to rosuvastatin in Asian subjects when compared with Caucasian controls. Rostor dosage should be adjusted in Asian patients.
The dose range for Rostor in adults is 5 to 40 mg orally once daily. The usual starting dose is 10 to 20 mg once daily. The usual starting dose in adult patients with homozygous familial hypercholesterolemia is 20 mg once daily.
The maximum Rostor dose of 40 mg should be used only for those patients who have not achieved their LDL-C goal utilizing the 20 mg dose.
Rostor can be administered as a single dose at any time of day, with or without food. The tablet should be swallowed whole.
When initiating Rostor therapy or switching from another HMGCoA reductase inhibitor therapy, the appropriate Rostor starting dose should first be utilized, and only then titrated according to the patient’s response and individualized goal of therapy.
After initiation or upon titration of Rostor, lipid levels should be analyzed within 2 to 4 weeks and the dosage adjusted accordingly.
Pediatric DosingIn heterozygous familial hypercholesterolemia, the recommended dose range is 5 to 10 mg orally once daily in patients 8 to less than 10 years of age, and 5 to 20 mg orally once daily in patients 10 to 17 years of age.
In homozygous familial hypercholesterolemia, the recommended dose is 20 mg orally once daily in patients 7 to 17 years of age.
Dosing In Asian PatientsIn Asian patients, consider initiation of Rostor therapy with 5 mg once daily due to increased rosuvastatin plasma concentrations. The increased systemic exposure should be taken into consideration when treating Asian patients not adequately controlled at doses up to 20 mg/day.
Use With Concomitant Therapy Patients Taking CyclosporineThe dose of Rostor should not exceed 5 mg once daily.
Patients Taking GemfibrozilAvoid concomitant use of Rostor with gemfibrozil. If concomitant use cannot be avoided, initiate Rostor at 5 mg once daily. The dose of Rostor should not exceed 10 mg once daily.
Patients Taking Atazanavir And Ritonavir, Lopinavir And Ritonavir, Or SimeprevirInitiate Rostor therapy with 5 mg once daily. The dose of Rostor should not exceed 10 mg once daily.
Dosing In Patients With Severe Renal ImpairmentFor patients with severe renal impairment (CLcr < 30 mL/min/1.73 m²) not on hemodialysis, dosing of Rostor should be started at 5 mg once daily and not exceed 10 mg once daily.