Mabthera

Overdose

Limited experience with doses higher than the approved dose of intravenous MabThera formulation is available from clinical trials in humans. The highest intravenous dose of MabThera tested in humans to date is 5000 mg (2250 mg/m2), tested in a dose escalation study in patients with CLL. No additional safety signals were identified.

Patients who experience overdose should have immediate interruption of their infusion and be closely monitored.

In the postmarketing setting five cases of MabThera overdose have been reported. Three cases had no reported adverse event. The two adverse events that were reported were flu-like symptoms, with a dose of 1.8 g of rituximab and fatal respiratory failure, with a dose of 2 g of rituximab.

Shelf life

Unopened vial

30 months

Diluted medicinal product

The prepared infusion solution of MabThera in 0.9% sodium chloride solution is physically and chemically stable for 7 days at 2 °C - 8 °C and subsequently for a further 24 hours at ≤ 30 °C. The prepared infusion solution of MabThera in 5% D-glucose solution is physically and chemically stable for 24 hours at 2 °C - 8 °C and subsequently for a further 12 hours at room temperature.

From a microbiological point of view, the prepared infusion solution should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2 °C - 8 °C, unless dilution has taken place in controlled and validated aseptic conditions.

Incompatibilities

No incompatibilities between MabThera and polyvinyl chloride or polyethylene bags or infusion sets have been observed.

List of excipients

Sodium citrate

Polysorbate 80

Sodium chloride

Sodium hydroxide

Hydrochloric acid

Water for injections

Undesirable effects

Experience from non-Hodgkin's lymphoma and chronic lymphocytic leukaemia

Summary of the safety profile

The overall safety profile of MabThera in non-Hodgkin's lymphoma and CLL is based on data from patients from clinical trials and from post-marketing surveillance. These patients were treated either with MabThera monotherapy (as induction treatment or maintenance treatment following induction treatment) or in combination with chemotherapy.

The most frequently observed adverse drug reactions (ADRs) in patients receiving MabThera were IRRs which occurred in the majority of patients during the first infusion. The incidence of infusion-related symptoms decreases substantially with subsequent infusions and is less than 1% after eight doses of MabThera.

Infectious events (predominantly bacterial and viral) occurred in approximately 30-55 % of patients during clinical trials in patients with NHL and in 30-50 % of patients during clinical trials in patients with CLL.

The most frequent reported or observed serious adverse drug reactions were:

-

-

-

Other serious ADRs reported include hepatitis B reactivation and PML.

Tabulated list of adverse reactions

The frequencies of ADRs reported with MabThera alone or in combination with chemotherapy are summarised in Table 1. Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness. Frequencies are defined as very common (> 1/10), common (> 1/100 to < 1/10), uncommon (> 1/1,000 to < 1/100), rare (> 1/10,000 to < 1/1000), very rare (< 1/10,000) and not known (cannot be estimated from the available data).

The ADRs identified only during post-marketing surveillance, and for which a frequency could not be estimated, are listed under “not known”.

Table 1 ADRs reported in clinical trials or during postmarketing surveillance in patients with NHL and CLL disease treated with MabThera monotherapy/maintenance or in combination with chemotherapy

System Organ Class

Very Common

Common

Uncommon

Rare

Very Rare

Not known

Infections and infestations

bacterial infections, viral infections, +bronchitis

sepsis, +pneumonia, +febrile infection, +herpes zoster, +respiratory tract infection, fungal infections, infections of unknown aetiology, +acute bronchitis, +sinusitis, hepatitis B1

serious viral infection2

Pneumocystis jirovecii

PML

Blood and lymphatic system disorders

neutropenia, leucopenia, +febrile neutropenia, +thrombo-cytopenia

anaemia, +pancytopenia, +granulocyto-penia

coagulation disorders, aplastic anaemia, haemolytic anaemia, lymphaden-opathy

transient increase in serum IgM levels3

late neutropenia3

Immune system disorders

infusion related reactions4, angioedema

hypersensitivity

anaphylaxis

tumour lysis syndrome, cytokine release syndrome4, serum sickness

infusion-related acute reversible thrombocyto-penia4

Metabolism and nutrition disorders

hyperglycaemia, weight decrease, peripheral oedema, face oedema, increased LDH, hypocalcaemia

Psychiatric disorders

depression, nervousness,

Nervous system disorders

paraesthesia, hypoaesthesia, agitation, insomnia, vasodilatation, dizziness, anxiety

Dysgeusia

peripheral neuropathy, facial nerve palsy5

cranial neuropathy, loss of other senses5

Eye disorders

lacrimation disorder, conjunctivitis

severe vision loss5

Ear and labyrinth disorders

tinnitus, ear pain

hearing loss5

Cardiac disorders

+myocardial infarction4 and 6, arrhythmia, +atrial fibrillation, tachycardia, +cardiac disorder

+left ventricular failure, +supra-ventricular tachycardia, +ventricular tachycardia, +angina, +myocardial ischaemia, bradycardia

severe cardiac disorders 4 and 6

heart failure4 and 6

Vascular disorders

hypertension, orthostatic hypotension, hypotension

vasculitis (predominately cutaneous), leukocytoclastic vasculitis

Respiratory, thoracic and mediastinal disorders

Bronchospasm4, respiratory disease, chest pain, dyspnoea, increased cough, rhinitis

asthma, bronchiolitis obliterans, lung disorder, hypoxia

interstitial lung disease7

respiratory failure4,

lung infiltration,

Gastrointestinal disorders

nausea

vomiting , diarrhoea, abdominal pain, dysphagia, stomatitis, constipation, dyspepsia, anorexia, throat irritation

abdominal enlargement

gastro-intestinal perforation7

Skin and subcutaneous tissue disorders

pruritus, rash, +alopecia

urticaria, sweating, night sweats, +skin disorder

severe bullous skin reactions, Stevens-Johnson syndrome

toxic epidermal necrolysis (Lyell's syndrome) 7

Musculoskeletal, connective tissue and bone disorders

hypertonia, myalgia, arthralgia, back pain, neck pain, pain

Renal and urinary disorders

renal failure4

General disorders and administration site conditions

fever , chills, asthenia, headache

tumour pain, flushing, malaise, cold syndrome, +fatigue, +shivering, +multi-organ failure4

infusion site pain

Investigations

decreased IgG levels

For each term, the frequency count was based on reactions of all grades (from mild to severe), except for terms marked with "+" where the frequency count was based only on severe (> grade 3 NCI common toxicity criteria) reactions. Only the highest frequency observed in the trials is reported

1 includes reactivation and primary infections; frequency based on R-FC regimen in relapsed/refractory CLL

2 see also section infection below

3 see also section haematologic adverse reactions below

4 see also section infusion related reactions below. Rarely fatal cases reported

5 signs and symptoms of cranial neuropathy. Occurred at various times up to several months after completion of MabThera therapy

6 observed mainly in patients with prior cardiac condition and/or cardiotoxic chemotherapy and were mostly associated with infusion-related reactions

7 includes fatal cases

The following terms have been reported as adverse events during clinical trials, however, were reported at a similar or lower incidence in the MabThera arms compared to control arms: haematotoxicity, neutropenic infection, urinary tract infection, sensory disturbance, pyrexia.

Signs and symptoms suggestive of an infusion-related reaction were reported in more than 50% of patients in clinical trials, and were predominantly seen during the first infusion, usually in the first one to two hours. These symptoms mainly comprised fever, chills and rigors. Other symptoms included flushing, angioedema, bronchospasm, vomiting, nausea, urticaria/rash, fatigue, headache, throat irritation, rhinitis, pruritus, pain, tachycardia, hypertension, hypotension, dyspnoea, dyspepsia, asthenia and features of tumour lysis syndrome. Severe infusion-related reactions (such as bronchospasm, hypotension) occurred in up to 12% of the cases. Additional reactions reported in some cases were myocardial infarction, atrial fibrillation, pulmonary oedema and acute reversible thrombocytopenia. Exacerbations of pre-existing cardiac conditions such as angina pectoris or congestive heart failure or severe cardiac disorders (heart failure, myocardial infarction, atrial fibrillation), pulmonary oedema, multi-organ failure, tumour lysis syndrome, cytokine release syndrome, renal failure, and respiratory failure were reported at lower or unknown frequencies. The incidence of infusion-related symptoms decreased substantially with subsequent infusions and is <1% of patients by the eighth cycle of MabThera (containing) treatment.

Description of selected adverse reactions

Infections

MabThera induces B-cell depletion in about 70-80% of patients, but was associated with decreased serum immunoglobulins only in a minority of patients.

Localized candida infections as well as Herpes zoster were reported at a higher incidence in the MabThera-containing arm of randomised studies. Severe infections were reported in about 4% of patients treated with MabThera monotherapy. Higher frequencies of infections overall, including grade 3 or 4 infections, were observed during MabThera maintenance treatment up to 2 years when compared to observation. There was no cumulative toxicity in terms of infections reported over a 2-year treatment period. In addition, other serious viral infections either new, reactivated or exacerbated, some of which were fatal, have been reported with MabThera treatment. The majority of patients had received MabThera in combination with chemotherapy or as part of a haematopoetic stem cell transplant. Examples of these serious viral infections are infections caused by the herpes viruses (Cytomegalovirus, Varicella Zoster Virus and Herpes Simplex Virus), JC virus (progressive multifocal leukoencephalopathy (PML)) and hepatitis C virus. Cases of fatal PML that occurred after disease progression and retreatment have also been reported in clinical trials. Cases of hepatitis B reactivation, have been reported, the majority of which were in patients receiving MabThera in combination with cytotoxic chemotherapy. In patients with relapsed/refractory CLL, the incidence of grade 3/4 hepatitis B infection (reactivation and primary infection) was 2% in R-FC vs 0% FC. Progression of Kaposi's sarcoma has been observed in MabThera-exposed patients with pre-existing Kaposi's sarcoma. These cases occurred in non-approved indications and the majority of patients were HIV positive.

Haematologic adverse reactions

In clinical trials with MabThera monotherapy given for 4 weeks, haematological abnormalities occurred in a minority of patients and were usually mild and reversible. Severe (grade 3/4) neutropenia was reported in 4.2%, anaemia in 1.1% and thrombocytopenia in 1.7 % of the patients. During MabThera maintenance treatment for up to 2 years, leucopenia (5% vs. 2%, grade 3/4) and neutropenia (10% vs. 4 %, grade 3/4) were reported at a higher incidence when compared to observation. The incidence of thrombocytopenia was low (<1%, grade 3/4) and was not different between treatment arms. During the treatment course in studies with MabThera in combination with chemotherapy, grade 3/4 leucopenia (R-CHOP 88% vs. CHOP 79%, R-FC 23% vs. FC 12%), neutropenia (R-CVP 24% vs. CVP 14%; R-CHOP 97% vs. CHOP 88%, R-FC 30% vs. FC 19% in previously untreated CLL), pancytopenia (R-FC 3% vs. FC 1% in previously untreated CLL) were usually reported with higher frequencies when compared to chemotherapy alone. However, the higher incidence of neutropenia in patients treated with MabThera and chemotherapy was not associated with a higher incidence of infections and infestations compared to patients treated with chemotherapy alone. Studies in previously untreated and relapsed/refractory CLL have established that in up to 25% of patients treated with R-FC neutropenia was prolonged (defined as neutrophil count remaining below 1x109/L between day 24 and 42 after the last dose) or occurred with a late onset (defined as neutrophil count below 1x109/L later than 42 days after last dose in patients with no previous prolonged neutropenia or who recovered prior to day 42) following treatment with MabThera plus FC. There were no differences reported for the incidence of anaemia. Some cases of late neutropenia occurring more than four weeks after the last infusion of MabThera were reported. In the CLL first-line study, Binet stage C patients experienced more adverse events in the R-FC arm compared to the FC arm (R-FC 83% vs. FC 71%). In the relapsed/refractory CLL study grade 3/4 thrombocytopenia was reported in 11% of patients in the R-FC group compared to 9% of patients in the FC group.

In studies of MabThera in patients with Waldenstrom's macroglobulinaemia, transient increases in serum IgM levels have been observed following treatment initiation, which may be associated with hyperviscosity and related symptoms. The transient IgM increase usually returned to at least baseline level within 4 months.

Cardiovascular adverse reactions

Cardiovascular reactions during clinical trials with MabThera monotherapy were reported in 18.8% of patients with the most frequently reported events being hypotension and hypertension. Cases of grade 3 or 4 arrhythmia (including ventricular and supraventricular tachycardia) and angina pectoris during infusion were reported. During maintenance treatment, the incidence of grade 3/4 cardiac disorders was comparable between patients treated with MabThera and observation. Cardiac events were reported as serious adverse events (including atrial fibrillation, myocardial infarction, left ventricular failure, myocardial ischaemia) in 3% of patients treated with MabThera compared to <1% on observation. In studies evaluating MabThera in combination with chemotherapy, the incidence of grade 3 and 4 cardiac arrhythmias, predominantly supraventricular arrhythmias such as tachycardia and atrial flutter/fibrillation, was higher in the R-CHOP group (14 patients, 6.9%) as compared to the CHOP group (3 patients, 1.5%). All of these arrhythmias either occurred in the context of a MabThera infusion or were associated with predisposing conditions such as fever, infection, acute myocardial infarction or pre-existing respiratory and cardiovascular disease. No difference between the R-CHOP and CHOP group was observed in the incidence of other grade 3 and 4 cardiac events including heart failure, myocardial disease and manifestations of coronary artery disease. In CLL, the overall incidence of grade 3 or 4 cardiac disorders was low both in the first-line study (4% R-FC, 3% FC) and in the relapsed/refractory study (4% R-FC, 4% FC).

Respiratory system

Cases of interstitial lung disease, some with fatal outcome have been reported.

Neurologic disorders

During the treatment period (induction treatment phase comprising of R-CHOP for at most eight cycles), four patients (2%) treated with R-CHOP, all with cardiovascular risk factors, experienced thromboembolic cerebrovascular accidents during the first treatment cycle. There was no difference between the treatment groups in the incidence of other thromboembolic events. In contrast, three patients (1.5%) had cerebrovascular events in the CHOP group, all of which occurred during the follow-up period. In CLL, the overall incidence of grade 3 or 4 nervous system disorders was low both in the first-line study (4% R-FC, 4% FC) and in the relapsed/refractory study (3% R-FC, 3% FC).

Cases of posterior reversible encephalopathy syndrome (PRES) / reversible posterior leukoencephalopathy syndrome (RPLS) have been reported. Signs and symptoms included visual disturbance, headache, seizures and altered mental status, with or without associated hypertension. A diagnosis of PRES/RPLS requires confirmation by brain imaging. The reported cases had recognized risk factors for PRES/RPLS, including the patients' underlying disease, hypertension, immunosuppressive therapy and/or chemotherapy.

Gastrointestinal disorders

Gastrointestinal perforation in some cases leading to death has been observed in patients receiving MabThera for treatment of non-Hodgkin lymphoma. In the majority of these cases, MabThera was administered with chemotherapy.

IgG levels

In the clinical trial evaluating MabThera maintenance treatment in relapsed/refractory follicular lymphoma, median IgG levels were below the lower limit of normal (LLN) (< 7 g/L) after induction treatment in both the observation and the MabThera groups. In the observation group, the median IgG level subsequently increased to above the LLN, but remained constant in the MabThera group. The proportion of patients with IgG levels below the LLN was about 60% in the MabThera group throughout the 2 year treatment period, while it decreased in the observation group (36% after 2 years).

A small number of spontaneous and literature cases of hypogammaglobulinaemia have been observed in paediatric patients treated with MabThera, in some cases severe and requiring long-term immunoglobulin substitution therapy. The consequences of long term B cell depletion in paediatric patients are unknown.

Skin and subcutaneous tissue disorders

Toxic Epidermal Necrolysis (Lyell syndrome) and Stevens-Johnson syndrome, some with fatal outcome, have been reported very rarely.

Patient subpopulations - MabThera monotherapy

Elderly patients (> 65 years):

The incidence of ADRs of all grades and grade 3 /4 ADR was similar in elderly patients compared to younger patients (<65 years).

Bulky disease

There was a higher incidence of grade 3/4 ADRs in patients with bulky disease than in patients without bulky disease (25.6 % vs. 15.4 %). The incidence of ADRs of any grade was similar in these two groups.

Re-treatment

The percentage of patients reporting ADRs upon re-treatment with further courses of MabThera was similar to the percentage of patients reporting ADRs upon initial exposure (any grade and grade 3/4 ADRs).

Patient subpopulations - MabThera combination therapy

Elderly patients (> 65 years)

The incidence of grade 3/4 blood and lymphatic adverse events was higher in elderly patients compared to younger patients (<65 years), with previously untreated or relapsed/refractory CLL.

Experience from rheumatoid arthritis

Summary of the safety profile

The overall safety profile of MabThera in rheumatoid arthritis is based on data from patients from clinical trials and from post-marketing surveillance.

The safety profile of MabThera in patients with moderate to severe rheumatoid arthritis (RA) is summarized in the sections below. In clinical trials more than 3100 patients received at least one treatment course and were followed for periods ranging from 6 months to over 5 years; approximately 2400 patients received two or more courses of treatment with over 1000 having received 5 or more courses. The safety information collected during post marketing experience reflects the expected adverse reaction profile as seen in clinical trials for MabThera.

Patients received 2 x 1000 mg of MabThera separated by an interval of two weeks; in addition to methotrexate (10-25 mg/week). MabThera infusions were administered after an intravenous infusion of 100 mg methylprednisolone; patients also received treatment with oral prednisone for 15 days.

Tabulated list of adverse reactions

Adverse reactions are listed in Table 2. Frequencies are defined as very common (>1/10), common (>1/100 to <1/10), uncommon (>1/1,000 to <1/100), and very rare (<1/10,000). Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most frequent adverse reactions considered due to receipt of MabThera were IRRs. The overall incidence of IRRs in clinical trials was 23% with the first infusion and decreased with subsequent infusions. Serious IRRs were uncommon (0.5% of patients) and were predominantly seen during the initial course. In addition to adverse reactions seen in RA clinical trials for MabThera, progressive multifocal leukoencephalopathy (PML) and serum sickness-like reaction have been reported during post marketing experience.

Table 2 Summary of adverse drug reactions reported in clinical trials or during postmarketing surveillance occurring in patients with rheumatoid arthritis receiving MabThera

System Organ Class

Very Common

Common

Uncommon

Rare

Very rare

Infections and Infestations

upper respiratory tract infection, urinary tract infections

Bronchitis, sinusitis, gastroenteritis, tinea pedis

PML, reactivation of hepatitis B

Blood and lymphatic system disorders

neutropenia1

late neutropenia2

Serum sickness-like reaction

Cardiac disorders

Angina pectoris, atrial fibrillation, heart failure, myocardial infarction

Atrial flutter

Immune system disorders

3Infusion related reactions (hypertension, nausea, rash, pyrexia, pruritus, urticaria, throat irritation, hot flush, hypotension, rhinitis, rigors, tachycardia, fatigue, oropharyngeal pain, peripheral oedema, erythema)

3Infusion related reactions (generalized oedema, bronchospasm, wheezing, laryngeal oedema, angioneurotic oedema, generalized pruritus, anaphylaxis, anaphylactoid reaction)

General disorders and administration site conditions

Metabolism and nutritional disorders

hypercholesterolemia

Nervous system disorders

headache

paraesthesia, migraine, dizziness, sciatica

Skin and subcutaneous tissue disorders

alopecia

Toxic Epidermal Necrolysis (Lyell's syndrome), Stevens-Johnson syndrome5

Psychiatric disorders

depression, anxiety

Gastrointestinal disorders

Dyspepsia, diarrhoea, gastro-oesophageal reflux, mouth ulceration, upper abdominal pain

Musculo skeletal disorders

arthralgia / musculoskeletal pain, osteoarthritis, bursitis

Investigations

decreased IgM levels4

decreased IgG levels4

1 Frequency category derived from laboratory values collected as part of routine laboratory monitoring in clinical trials

2 Frequency category derived from post-marketing data.

3 Reactions occurring during or within 24 hours of infusion. See also infusion-related reactions below. IRRs may occur as a result of hypersensitivity and/or to the mechanism of action.

4 Includes observations collected as part of routine laboratory monitoring.

5 Includes fatal cases

Multiple courses

Multiple courses of treatment are associated with a similar ADR profile to that observed following first exposure. The rate of all ADRs following first MabThera exposure was highest during the first 6 months and declined thereafter. This is mostly accounted for by IRRs (most frequent during the first treatment course), RA exacerbation and infections, all of which were more frequent in the first 6 months of treatment.

Infusion-related reactions

The most frequent ADRs following receipt of MabThera in clinical studies were IRRs (refer to Table 2). Among the 3189 patients treated with MabThera, 1135 (36%) experienced at least one IRR with 733/3189 (23%) of patients experiencing an IRR following first infusion of the first exposure to MabThera. The incidence of IRRs declined with subsequent infusions. In clinical trials fewer than 1% (17/3189) of patients experienced a serious IRR. There were no CTC Grade 4 IRRs and no deaths due to IRRs in the clinical trials. The proportion of CTC Grade 3 events and of IRRs leading to withdrawal decreased by course and were rare from course 3 onwards. Premedication with intravenous glucocorticoid significantly reduced the incidence and severity of IRRs. Severe IRRs with fatal outcome have been reported in the post-marketing setting.

In a trial designed to evaluate the safety of a more rapid MabThera infusion in patients with rheumatoid arthritis, patients with moderat

Preclinical safety data

Rituximab has shown to be highly specific to the CD20 antigen on B cells. Toxicity studies in cynomolgus monkeys have shown no other effect than the expected pharmacological depletion of B cells in peripheral blood and in lymphoid tissue.

Developmental toxicity studies have been performed in cynomolgus monkeys at doses up to 100 mg/kg (treatment on gestation days 20-50) and have revealed no evidence of toxicity to the foetus due to rituximab. However, dose-dependent pharmacologic depletion of B cells in the lymphoid organs of the foetuses was observed, which persisted post natally and was accompanied by a decrease in IgG level in the newborn animals affected. B cell counts returned to normal in these animals within 6 months of birth and did not compromise the reaction to immunisation.

Standard tests to investigate mutagenicity have not been carried out, since such tests are not relevant for this molecule. No long-term animal studies have been performed to establish the carcinogenic potential of rituximab.

Specific studies to determine the effects of rituximab on fertility have not been performed. In general toxicity studies in cynomolgus monkeys no deleterious effects on reproductive organs in males or females were observed.

Pharmacotherapeutic group

antineoplastic agents, monoclonal antibodies, ATC code: L01X C02

Pharmacodynamic properties

Pharmacotherapeutic group: antineoplastic agents, monoclonal antibodies, ATC code: L01X C02

Rituximab binds specifically to the transmembrane antigen, CD20, a non-glycosylated phosphoprotein, located on pre-B and mature B lymphocytes. The antigen is expressed on >95 % of all B cell non-Hodgkin's lymphomas.

CD20 is found on both normal and malignant B cells, but not on haematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissue. This antigen does not internalise upon antibody binding and is not shed from the cell surface. CD20 does not circulate in the plasma as a free antigen and, thus, does not compete for antibody binding.

The Fab domain of rituximab binds to the CD20 antigen on B lymphocytes and the Fc domain can recruit immune effector functions to mediate B cell lysis. Possible mechanisms of effector-mediated cell lysis include complement-dependent cytotoxicity (CDC) resulting from C1q binding, and antibody-dependent cellular cytotoxicity (ADCC) mediated by one or more of the Fcγ receptors on the surface of granulocytes, macrophages and NK cells. Rituximab binding to CD 20 antigen on B lymphocytes has also been demonstrated to induce cell death via apoptosis.

Peripheral B cell counts declined below normal following completion of the first dose of MabThera. In patients treated for haematological malignancies, B cell recovery began within 6 months of treatment and generally returned to normal levels within 12 months after completion of therapy, although in some patients this may take longer (up to a median recovery time of 23 months post-induction therapy). In rheumatoid arthritis patients, immediate depletion of B cells in the peripheral blood was observed following two infusions of 1000 mg MabThera separated by a 14 day interval. Peripheral blood B cell counts begin to increase from week 24 and evidence for repopulation is observed in the majority of patients by week 40, whether MabThera was administered as monotherapy or in combination with methotrexate. A small proportion of patients had prolonged peripheral B cell depletion lasting 2 years or more after their last dose of MabThera. In patients with granulomatosis with polyangiitis or microscopic polyangiitis, the number of peripheral blood B cells decreased to <10 cells/μL after two weekly infusions of rituximab 375 mg/m2, and remained at that level in most patients up to the 6 month timepoint. The majority of patients (81%) showed signs of B cell return, with counts >10 cells/μL by month 12, increasing to 87% of patients by month 18.

Clinical experience in Non-Hodgkin's lymphoma and in chronic lymphocytic leukaemia

Follicular lymphoma

Monotherapy

Initial treatment, weekly for 4 doses

In the pivotal trial, 166 patients with relapsed or chemoresistant low-grade or follicular B cell NHL received 375 mg/m2 of MabThera as an intravenous infusion once weekly for four weeks. The overall response rate (ORR) in the intent-to-treat (ITT) population was 48 % (CI95 % 41 % - 56 %) with a 6 % complete response (CR) and a 42 % partial response (PR) rate. The projected median time to progression (TTP) for responding patients was 13.0 months. In a subgroup analysis, the ORR was higher in patients with IWF B, C, and D histological subtypes as compared to IWF A subtype (58 % vs. 12 %), higher in patients whose largest lesion was < 5 cm vs. > 7 cm in greatest diameter (53 % vs. 38 %), and higher in patients with chemosensitive relapse as compared to chemoresistant (defined as duration of response < 3 months) relapse (50 % vs. 22 %). ORR in patients previously treated with autologous bone marrow transplant (ABMT) was 78 % versus 43 % in patients with no ABMT. Neither age, sex, lymphoma grade, initial diagnosis, presence or absence of bulky disease, normal or high LDH nor presence of extranodal disease had a statistically significant effect (Fisher's exact test) on response to MabThera. A statistically significant correlation was noted between response rates and bone marrow involvement. 40 % of patients with bone marrow involvement responded compared to 59 % of patients with no bone marrow involvement (p=0.0186). This finding was not supported by a stepwise logistic regression analysis in which the following factors were identified as prognostic factors: histological type, bcl-2 positivity at baseline, resistance to last chemotherapy and bulky disease.

Initial treatment, weekly for 8 doses

In a multi-centre, single-arm trial, 37 patients with relapsed or chemoresistant, low grade or follicular B cell NHL received 375 mg/m2 of MabThera as intravenous infusion weekly for eight doses. The ORR was 57 % (95% Confidence interval (CI); 41% - 73%; CR 14 %, PR 43%) with a projected median TTP for responding patients of 19.4 months (range 5.3 to 38.9 months).

Initial treatment, bulky disease, weekly for 4 doses

In pooled data from three trials, 39 patients with relapsed or chemoresistant, bulky disease (single lesion > 10 cm in diameter), low grade or follicular B cell NHL received 375 mg/m2 of MabThera as intravenous infusion weekly for four doses. The ORR was 36 % (CI95 % 21 % - 51 %; CR 3 %, PR 33 %) with a median TTP for responding patients of 9.6 months (range 4.5 to 26.8 months).

Re-treatment, weekly for 4 doses

In a multi-centre, single-arm trial, 58 patients with relapsed or chemoresistant low grade or follicular B cell NHL, who had achieved an objective clinical response to a prior course of MabThera, were re-treated with 375 mg/m2 of MabThera as intravenous infusion weekly for four doses. Three of the patients had received two courses of MabThera before enrolment and thus were given a third course in the study. Two patients were re-treated twice in the study. For the 60 re-treatments on study, the ORR was 38 % (CI95 % 26 % - 51 %; 10 % CR, 28 % PR) with a projected median TTP for responding patients of 17.8 months (range 5.4 - 26.6). This compares favourably with the TTP achieved after the prior course of MabThera (12.4 months).

Initial treatment, in combination with chemotherapy

In an open-label randomised trial, a total of 322 previously untreated patients with follicular lymphoma were randomised to receive either CVP chemotherapy (cyclophosphamide 750 mg/m2, vincristine 1.4 mg/m2 up to a maximum of 2 mg on day 1, and prednisolone 40 mg/m2/day on days 1 -5) every 3 weeks for 8 cycles or MabThera 375 mg/m2 in combination with CVP (R-CVP). MabThera was administered on the first day of each treatment cycle. A total of 321 patients (162 R-CVP, 159 CVP) received therapy and were analysed for efficacy. The median follow up of patients was 53 months. R-CVP led to a significant benefit over CVP for the primary endpoint, time to treatment failure (27 months vs. 6.6 months, p < 0.0001, log-rank test). The proportion of patients with a tumour response (CR, CRu, PR) was significantly higher (p< 0.0001 Chi-Square test) in the R-CVP group (80.9 %) than the CVP group (57.2 %). Treatment with R-CVP significantly prolonged the time to disease progression or death compared to CVP, 33.6 months and 14.7 months, respectively (p < 0.0001, log-rank test). The median duration of response was 37.7 months in the R-CVP group and was 13.5 months in the CVP group (p < 0.0001, log-rank test).

The difference between the treatment groups with respect to overall survival showed a significant clinical difference (p=0.029, log-rank test stratified by centre): survival rates at 53 months were 80.9 % for patients in the R-CVP group compared to 71.1 % for patients in the CVP group.

Results from three other randomised trials using MabThera in combination with chemotherapy regimen other than CVP (CHOP, MCP, CHVP/Interferon-α) have also demonstrated significant improvements in response rates, time-dependent parameters as well as in overall survival. Key results from all four studies are summarized in table 4.

Table 4 Summary of key results from four phase III randomised studies evaluating the benefit of MabThera with different chemotherapy regimens in follicular lymphoma

Study

Treatment, N

Median FU, months

ORR, %

CR, %

Median TTF/PFS/ EFS mo

OS rates, %

M39021

CVP, 159

R-CVP, 162

53

57

81

10

41

Median TTP:

14.7

33.6

P<0.0001

53-months

71.1

80.9

p=0.029

GLSG'00

CHOP, 205

R-CHOP, 223

18

90

96

17

20

Median TTF: 2.6 years

Not reached

p < 0.001

18-months

90

95

p = 0.016

OSHO-39

MCP, 96

R-MCP, 105

47

75

92

25

50

Median PFS: 28.8

Not reached

p < 0.0001

48-months

74

87

p = 0.0096

FL2000

CHVP-IFN, 183

R-CHVP-IFN, 175

42

85

94

49

76

Median EFS: 36

Not reached

p < 0.0001

42-months

84

91

p = 0.029

EFS - Event Free Survival

TTP - Time to progression or death

PFS - Progression-Free Survival

TTF - Time to Treatment Failure

OS rates - survival rates at the time of the analyses

Maintenance therapy

Previously untreated follicular lymphoma

In a prospective, open label, international, multi-centre, phase III trial 1193 patients with previously untreated advanced follicular lymphoma received induction therapy with R-CHOP (n=881), R-CVP (n=268) or R-FCM (n=44), according to the investigators' choice. A total of 1078 patients responded to induction therapy, of which 1018 were randomised to MabThera maintenance therapy (n=505) or observation (n=513). The two treatment groups were well balanced with regards to baseline characteristics and disease status. MabThera maintenance treatment consisted of a single infusion of MabThera at 375 mg/m2 body surface area given every 2 months until disease progression or for a maximum period of two years.

The pre-specified primary analysis was conducted at a median observation time of 25 months from randomization, maintenance therapy with MabThera resulted in a clinically relevant and statistically significant improvement in the primary endpoint of investigator assessed progression-free survival (PFS) as compared to observation in patients with previously untreated follicular lymphoma (Table 5).

Significant benefit from maintenance treatment with MabThera was also seen for the secondary endpoints event-free survival (EFS), time to next anti-lymphoma treatment (TNLT) time to next chemotherapy (TNCT) and overall response rate (ORR) in the primary analysis (Table 5).

Data from extended follow-up of patients in the study (median follow-up 9 years) confirmed the long-term benefit of MabThera maintenance therapy in terms of PFS, EFS, TNLT and TNCT (Table 5).

Table 5 Overview of efficacy results for MabThera maintenance vs. observation at the protocol-defined primary analysis and after 9 years median follow-up (final analysis)

Primary analysis

(median FU: 25 months)

Final analysis

(median FU: 9.0 years)

Observation

N=513

MabThera

N=505

Observation

N=513

MabThera

N=505

Primary efficacy

Progression-free survival (median)

NR

NR

4.06 years

10.49 years

log-rank p value

<0.0001

<0.0001

hazard ratio (95% CI)

risk reduction

0.50 (0.39, 0.64)

50%

0.61 (0.52, 0.73)

39%

Secondary efficacy

Overall survival (median)

NR

NR

NR

NR

log-rank p value

0.7246

0.7948

hazard ratio (95% CI)

risk reduction

0.89 (0.45, 1.74)

11%

1.04 (0.77, 1.40)

-6%

Event-free survival (median)

38 months

NR

4.04 years

9.25 years

log-rank p value

<0.0001

<0.0001

hazard ratio (95% CI)

risk reduction

0.54 (0.43, 0.69)

46%

0.64 (0.54, 0.76)

36%

TNLT (median)

NR

NR

6.11 years

NR

log-rank p value

0.0003

<0.0001

hazard ratio (95% CI)

risk reduction

0.61 (0.46, 0.80)

39%

0.66 (0.55, 0.78)

34%

TNCT (median)

NR

NR

9.32 years

NR

log-rank p value

0.0011

0.0004

hazard ratio (95% CI)

risk reduction

0.60 (0.44, 0.82)

40%

0.71 (0.59, 0.86)

39%

Overall response rate*

55%

74%

61%

79%

chi-squared test p value

<0.0001

<0.0001

odds ratio (95% CI)

2.33 (1.73, 3.15)

2.43 (1.84, 3.22)

Complete response (CR/CRu) rate*

48%

67%

53%

67%

chi-squared test p value

<0.0001

<0.0001

odds ratio (95% CI)

2.21 (1.65, 2.94)

2.34 (1.80, 3.03)

* at end of maintenance/observation; final analysis results based on median follow-up of 73 months.

FU: follow-up; NR: not reached at time of clinical cut off, TNCT: time to next chemotherapy treatment; TNLT: time to next anti lymphoma treatment.

MabThera maintenance treatment provided consistent benefit in all predefined subgroups tested: gender (male, female), age (<60 years, >= 60 years), FLIPI score (<=1, 2 or >= 3), induction therapy (R-CHOP, R-CVP or R-FCM) and regardless of the quality of response to induction treatment (CR,CRu or PR). Exploratory analyses of the benefit of maintenance treatment showed a less pronounced effect in elderly patients (> 70 years of age), however sample sizes were small.

Relapsed/Refractory follicular lymphoma

In a prospective, open label, international, multi-centre, phase III trial, 465 patients with relapsed/refractory follicular lymphoma were randomised in a first step to induction therapy with either CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone; n=231) or MabThera plus CHOP (R-CHOP, n=234). The two treatment groups were well balanced with regard to baseline characteristics and disease status. A total of 334 patients achieving a complete or partial remission following induction therapy were randomised in a second step to MabThera maintenance therapy (n=167) or observation (n=167). MabThera maintenance treatment consisted of a single infusion of MabThera at 375 mg/m2 body surface area given every 3 months until disease progression or for a maximum period of two years.

The final efficacy analysis included all patients randomised to both parts of the study. After a median observation time of 31 months for patients randomised to the induction phase, R-CHOP significantly improved the outcome of patients with relapsed/refractory follicular lymphoma when compared to CHOP (see Table 6).

Table 6 Induction phase: overview of efficacy results for CHOP vs. R-CHOP (31 months median observation time)

CHOP

R-CHOP

p-value

Risk Reduction1)

Primary efficacy

ORR2)

74 %

87 %

0.0003

Na

CR2)

16 %

29 %

0.0005

Na

PR2)

58 %

58 %

0.9449

Na

1) Estimates were calculated by hazard ratios

2) Last tumour response as assessed by the investigator. The “primary” statistical test for “response” was the trend test of CR versus PR versus non-response (p < 0.0001)

Abbreviations: NA, not available; ORR: overall response rate; CR: complete response; PR: partial response

For patients randomised to the maintenance phase of the trial, the median observation time was 28 months from maintenance randomisation. Maintenance treatment with MabThera led to a clinically relevant and statistically significant improvement in the primary endpoint, PFS, (time from maintenance randomisation to relapse, disease progression or death) when compared to observation alone (p< 0.0001 log-rank test). The median PFS was 42.2 months in the MabThera maintenance arm compared to 14.3 months in the observation arm. Using a cox regression analysis, the risk of experiencing progressive disease or death was reduced by 61 % with MabThera maintenance treatment when compared to observation (95 % CI; 45 %-72 %). Kaplan-Meier estimated progression-free rates at 12 months were 78 % in the MabThera maintenance group vs. 57 % in the observation group. An analysis of overall survival confirmed the significant benefit of MabThera maintenance over observation (p=0.0039 log-rank test). MabThera maintenance treatment reduced the risk of death by 56 % (95 % CI; 22 %-75 %).

Table 7 Maintenance phase: overview of efficacy results MabThera vs. observation (28 months median observation time)

Efficacy Parameter

Kaplan-Meier Estimate of Median Time to Event (Months)

Risk Reduction

Observation

(N = 167)

MabThera

(N=167)

Log-Rank

p value

Progression-free survival (PFS)

14.3

42.2

< 0.0001

61 %

Overall survival

NR

NR

0.0039

56 %

Time to new lymphoma treatment

20.1

38.8

< 0.0001

50 %

Disease-free survivala

16.5

53.7

0.0003

67 %

Subgroup analysis

PFS

CHOP

R-CHOP

CR

PR

OS

CHOP

R-CHOP

 

11.6

22.1

14.3

14.3
 
 

NR

NR

 

37.5

51.9

52.8

37.8
 
 

NR

NR

 

< 0.0001

0.0071

0.0008

< 0.0001
 
 

0.0348

0.0482

 

71 %

46 %

64 %

54 %
 
 

55 %

56 %

NR: not reached; a: only applicable to patients achieving a CR

The benefit of MabThera maintenance treatment was confirmed in all subgroups analysed, regardless of induction regimen (CHOP or R-CHOP) or quality of response to induction treatment (CR or PR) (table 7). MabThera maintenance treatment significantly prolonged median PFS in patients responding to CHOP induction therapy (median PFS 37.5 months vs. 11.6 months, p< 0.0001) as well as in those responding to R-CHOP induction (median PFS 51.9 months vs. 22.1 months, p=0.0071). Although subgroups were small, MabThera maintenance treatment provided a significant benefit in terms of overall survival for both patients responding to CHOP and patients responding to R-CHOP, although longer follow-up is required to confirm this observation.

Diffuse large B cell non-Hodgkin's lymphoma

In a randomised, open-label trial, a total of 399 previously untreated elderly patients (age 60 to 80 years) with diffuse large B cell lymphoma received standard CHOP chemotherapy (cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, vincristine 1.4 mg/m2 up to a maximum of 2 mg on day 1, and prednisolone 40 mg/m2/day on days 1-5) every 3 weeks for eight cycles, or MabThera 375 mg/m2 plus CHOP (R-CHOP). MabThera was administered on the first day of the treatment cycle.

The final efficacy analysis included all randomised patients (197 CHOP, 202 R-CHOP), and had a median follow-up duration of approximately 31 months. The two treatment groups were well balanced in baseline disease characteristics and disease status. The final analysis confirmed that R-CHOP treatment was associated with a clinically relevant and statistically significant improvement in the duration of event-free survival (the primary efficacy parameter; where events were death, relapse or progression of lymphoma, or institution of a new anti-lymphoma treatment) (p = 0.0001). Kaplan Meier estimates of the median duration of event-free survival were 35 months in the R-CHOP arm compared to 13 months in the CHOP arm, representing a risk reduction of 41 %. At 24 months, estimates for overall survival were 68.2 % in the R-CHOP arm compared to 57.4 % in the CHOP arm. A subsequent analysis of the duration of overall survival, carried out with a median follow-up duration of 60 months, confirmed the benefit of R-CHOP over CHOP treatment (p=0.0071), representing a risk reduction of 32 %.

The analysis of all secondary parameters (response rates, progression-free survival, disease-free survival, duration of response) verified the treatment effect of R-CHOP compared to CHOP. The complete response rate after cycle 8 was 76.2 % in the R-CHOP group and 62.4 % in the CHOP group (p=0.0028). The risk of disease progression was reduced by 46 % and the risk of relapse by 51 %.

In all patients subgroups (gender, age, age adjusted IPI, Ann Arbor stage, ECOG, β2 microglobulin, LDH, albumin, B symptoms, bulky disease, extranodal sites, bone marrow involvement), the risk ratios for event-free survival and overall survival (R-CHOP compared with CHOP) were less than 0.83 and 0.95 respectively. R-CHOP was associated with improvements in outcome for both high- and low-risk patients according to age adjusted IPI.

Clinical laboratory findings

Of 67 patients evaluated for human anti-mouse antibody (HAMA), no responses were noted. Of 356 patients evaluated for HACA, 1.1 % (4 patients) were positive.

Chronic lymphocytic leukaemia

In two open-label randomised trials, a total of 817 previously untreated patients and 552 patients with relapsed/refractory CLL were randomised to receive either FC chemotherapy (fludarabine 25 mg/m2, cyclophosphamide 250 mg/m2, days 1-3) every 4 weeks for 6 cycles or MabThera in combination with FC (R-FC). MabThera was administered at a dosage of 375 mg/m2 during the first cycle one day prior to chemotherapy and at a dosage of 500 mg/m2 on day 1 of each subsequent treatment cycle. Patients were excluded from the study in relapsed/refractory CLL if they had previously been treated with monoclonal antibodies or if they were refractory (defined as failure to achieve a partial remission for at least 6 months) to fludarabine or any nucleoside analogue. A total of 810 patients (403 R-FC, 407 FC) for the first-line study (Table 8a and Table 8b) and 552 patients (276 R-FC, 276 FC) for the relapsed/refractory study (Table 9) were analysed for efficacy.

In the first-line study, after a median observation time of 48.1 months, the median PFS was 55 months in the R-FC group and 33 months in the FC group (p < 0.0001, log-rank test). The analysis of overall survival showed a significant benefit of R-FC treatment over FC chemotherapy alone (p = 0.0319, log-rank test) (Table 8a). The benefit in terms of PFS was consistently observed in most patient subgroups analysed according to disease risk at baseline (i.e. Binet stages A-C) (Table 8b).

Table 8a First-line treatment of chronic lymphocytic leukaemia

Overview of efficacy results for MabThera plus FC vs. FC alone - 48.1 months median observation time

Efficacy Parameter

Kaplan-Meier Estimate of Median Time to Event (Months)

Risk Reduction

FC

(N = 409)

R-FC

(N=408)

Log-Rank

p value

Pharmacokinetic properties

Non-Hodgkin's lymphoma

Based on a population pharmacokinetic analysis in 298 NHL patients who received single or multiple infusions of MabThera as a single agent or in combination with CHOP therapy (applied MabThera doses ranged from 100 to 500 mg/m2), the typical population estimates of nonspecific clearance (CL1), specific clearance (CL2) likely contributed by B cells or tumour burden, and central compartment volume of distribution (V1) were 0.14 L/day, 0.59 L/day, and 2.7 L, respectively. The estimated median terminal elimination half-life of MabThera was 22 days (range, 6.1 to 52 days). Baseline CD19-positive cell counts and size of measurable tumour lesions contributed to some of the variability in CL2 of MabThera in data from 161 patients given 375 mg/m2 as an intravenous infusion for 4 weekly doses. Patients with higher CD19-positive cell counts or tumour lesions had a higher CL2. However, a large component of inter-individual variability remained for CL2 after correction for CD19-positive cell counts and tumour lesion size. V1 varied by body surface area (BSA) and CHOP therapy. This variability in V1 (27.1% and 19.0%) contributed by the range in BSA (1.53 to 2.32 m2) and concurrent CHOP therapy, respectively, were relatively small. Age, gender and WHO performance status had no effect on the pharmacokinetics of MabThera. This analysis suggests that dose adjustment of MabThera with any of the tested covariates is not expected to result in a meaningful reduction in its pharmacokinetic variability.

MabThera, administered as an intravenous infusion at a dose of 375 mg/m2 at weekly intervals for 4 doses to 203 patients with NHL naive to MabThera, yielded a mean Cmax following the fourth infusion of 486 µg/mL (range, 77.5 to 996.6 µg/mL). Rituximab was detectable in the serum of patients 3 - 6 months after completion of last treatment.

Upon administration of MabThera at a dose of 375 mg/m2 as an intravenous infusion at weekly intervals for 8 doses to 37 patients with NHL, the mean Cmax increased with each successive infusion, spanning from a mean of 243 µg/mL (range, 16 - 582 µg/mL) after the first infusion to 550 µg/mL (range, 171 - 1177 µg/mL) after the eighth infusion.

The pharmacokinetic profile of MabThera when administered as 6 infusions of 375 mg/m2 in combination with 6 cycles of CHOP chemotherapy was similar to that seen with MabThera alone.

Chronic lymphocytic leukaemia

MabThera was administered as an intravenous infusion at a first-cycle dose of 375 mg/m2 increased to 500 mg/m2 each cycle for 5 doses in combination with fludarabine and cyclophosphamide in CLL patients. The mean Cmax (N=15) was 408 µg/mL (range, 97 - 764 µg/mL) after the fifth 500 mg/ m2 infusion and the mean terminal half-life was 32 days (range, 14 - 62 days).

Rheumatoid arthritis

Following two intravenous infusions of MabThera at a dose of 1000 mg, two weeks apart, the mean terminal half-life was 20.8 days (range, 8.58 to 35.9 days), mean systemic clearance was 0.23 L/day (range, 0.091 to 0.67 L/day), and mean steady-state distribution volume was 4.6 l (range, 1.7 to 7.51 L). Population pharmacokinetic analysis of the same data gave similar mean values for systemic clearance and half-life, 0.26 L/day and 20.4 days, respectively. Population pharmacokinetic analysis revealed that BSA and gender were the most significant covariates to explain inter-individual variability in pharmacokinetic parameters. After adjusting for BSA, male subjects had a larger volume of distribution and a faster clearance than female subjects. The gender- related pharmacokinetic differences are not considered to be clinically relevant and dose adjustment is not required. No pharmacokinetic data are available in patients with hepatic or renal impairment.

The pharmacokinetics of rituximab were assessed following two intravenous (IV) doses of 500 mg and 1000 mg on Days 1 and 15 in four studies. In all these studies, rituximab pharmacokinetics were dose proportional over the limited dose range studied. Mean Cmax for serum rituximab following first infusion ranged from 157 to 171 μg/mL for 2 x 500 mg dose and ranged from 298 to 341 μg/mL for 2 x 1000 mg dose. Following second infusion, mean Cmax ranged from 183 to 198 μg/mL for the 2 × 500 mg dose and ranged from 355 to 404 μg/mL for the 2 × 1000 mg dose. Mean terminal elimination half-life ranged from 15 to 16 days for the 2 x 500 mg dose group and 17 to 21 days for the 2 × 1000 mg dose group. Mean Cmax was 16 to 19% higher following second infusion compared to the first infusion for both doses.

The pharmacokinetics of rituximab were assessed following two IV doses of 500 mg and 1000 mg upon re-treatment in the second course. Mean Cmax for serum rituximab following first infusion was 170 to 175 μg/mL for 2 x 500 mg dose and 317 to 370 μg/mL for 2 x 1000 mg dose. Cmax following second infusion, was 207 μg/mL for the 2 x 500 mg dose and ranged from 377 to 386 μg/mL for the 2 x 1000 mg dose. Mean terminal elimination half-life after the second infusion, following the second course, was 19 days for 2 x 500 mg dose and ranged from 21 to 22 days for the 2 x 1000 mg dose. PK parameters for rituximab were comparable over the two treatment courses.

The pharmacokinetic (PK) parameters in the anti-TNF inadequate responder population, following the same dosage regimen (2 x 1000 mg, IV, 2 weeks apart), were similar with a mean maximum serum concentration of 369 µg/mL and a mean terminal half-life of 19.2 days.

Granulomatosis with polyangiitis and microscopic polyangiitis

Based on the population pharmacokinetic analysis of data in 97 patients with granulomatosis with polyangiitis and microscopic polyangiitis who received 375 mg/m2 MabThera once weekly for four doses, the estimated median terminal elimination half-life was 23 days (range, 9 to 49 days). Rituximab mean clearance and volume of distribution were 0.313 L/day (range, 0.116 to 0.726 L/day) and 4.50 L (range 2.25 to 7.39 L) respectively. The PK parameters of rituximab in these patients appear similar to what has been observed in rheumatoid arthritis patients.

Date of revision of the text

26 April 2018

Marketing authorisation holder

Roche Registration GmbH

Emil-Barell-Strasse 1

79639 Grenzach-Wyhlen

Germany

Special precautions for storage

Store in a refrigerator (2 °C - 8 °C). Keep the container in the outer carton in order to protect from light.

Nature and contents of container

Clear Type I glass vials with butyl rubber stopper containing 100 mg of rituximab in 10 mL. Packs of 2 vials.

Marketing authorisation number(s)

EU/1/98/067/001

Fertility, pregnancy and lactation

Contraception in males and females

Due to the long retention time of rituximab in B cell depleted patients, women of childbearing potential should use effective contraceptive methods during and for 12 months following treatment with MabThera.

Pregnancy

IgG immunoglobulins are known to cross the placental barrier.

B cell levels in human neonates following maternal exposure to MabThera have not been studied in clinical trials. There are no adequate and well-controlled data from studies in pregnant women, however transient B-cell depletion and lymphocytopenia have been reported in some infants born to mothers exposed to MabThera during pregnancy. Similar effects have been observed in animal studies. For these reasons MabThera should not be administered to pregnant women unless the possible benefit outweighs the potential risk.

Breast-feeding

Whether rituximab is excreted in human milk is not known. However, because maternal IgG is excreted in human milk, and rituximab was detectable in milk from lactating monkeys, women should not breastfeed while treated with MabThera and for 12 months following MabThera treatment.

Fertility

Animal studies did not reveal deleterious effects of rituximab on reproductive organs.

Effects on ability to drive and use machines

No studies on the effects of MabThera on the ability to drive and use machines have been performed, although the pharmacological activity and adverse reactions reported to date suggest that MabThera would have no or negligible influence on the ability to drive and use machines.

Special precautions for disposal and other handling

MabThera is provided in sterile, preservative-free, non-pyrogenic, single use vials.

Aseptically withdraw the necessary amount of MabThera, and dilute to a calculated concentration of 1 to 4 mg/mL rituximab into an infusion bag containing sterile, pyrogen-free sodium chloride 9 mg/mL (0.9%) solution for injection or 5% D-Glucose in water. For mixing the solution, gently invert the bag in order to avoid foaming. Care must be taken to ensure the sterility of prepared solutions. Since the medicinal product does not contain any anti-microbial preservative or bacteriostatic agents, aseptic technique must be observed. Parenteral medicinal products should be inspected visually for particulate matter and discolouration prior to administration.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

Date of first authorisation/renewal of the authorisation

Date of first authorisation: 2 June 1998

Date of latest renewal: 2 June 2008