Juvisync (oral)

Overdose

Sitagliptin

During controlled clinical trials in healthy subjects, single doses of up to 800 mg sitagliptin were administered. Maximal mean increases in QTc of 8.0 msec were observed in one study at a dose of 800 mg sitagliptin, a mean effect that is not considered clinically important. There is no experience with doses above 800 mg in humans. In Phase I multiple-dose studies, there were no dose-related clinical adverse reactions observed with sitagliptin with doses of up to 600 mg per day for periods of up to 10 days and 400 mg per day for up to 28 days.

In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring (including obtaining an electrocardiogram), and institute supportive therapy as dictated by the patient's clinical status.

Sitagliptin is modestly dialyzable. In clinical studies, approximately 13.5% of the dose was removed over a 3-to 4-hour hemodialysis session. Prolonged hemodialysis may be considered if clinically appropriate. It is not known if sitagliptin is dialyzable by peritoneal dialysis.

Simvastatin

Significant lethality was observed in mice after a single oral dose of 9 g/m². No evidence of lethality was observed in rats or dogs treated with doses of 30 and 100 g/m², respectively. No specific diagnostic signs were observed in rodents. At these doses the only signs seen in dogs were emesis and mucoid stools.

A few cases of overdosage with simvastatin have been reported; the maximum dose taken was 3.6 g. All patients recovered without sequelae. Supportive measures should be taken in the event of an overdose. The dialyzability of simvastatin and its metabolites in man is not known at present.

Contraindications

JUVISYNC is contraindicated in the following conditions:

  • History of a serious hypersensitivity reaction, such as anaphylaxis or angioedema, to any component of this medication.
  • Concomitant administration of strong CYP3A4 inhibitors (e.g., itraconazole, ketoconazole, posaconazole, voriconazole, HIV protease inhibitors, boceprevir, telaprevir, erythromycin, clarithromycin, telithromycin, nefazodone, and cobicistat-containing products).
  • Concomitant administration of gemfibrozil, cyclosporine, or danazol.
  • Active liver disease, which may include unexplained persistent elevations in hepatic transaminase levels.
  • Women who are pregnant or may become pregnant. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Because HMG-CoA reductase inhibitors (statins) decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, simvastatin may cause fetal harm when administered to a pregnant woman. Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. There are no adequate and well-controlled studies of use with JUVISYNC during pregnancy; however, in rare reports congenital anomalies were observed following intrauterine exposure to statins. In rat and rabbit animal reproduction studies, simvastatin revealed no evidence of teratogenicity. JUVISYNC should be administered to women of childbearing age only when such patients are highly unlikely to conceive. If the patient becomes pregnant while taking this drug, JUVISYNC should be discontinued immediately and the patient should be apprised of the potential hazard to the fetus.
  • Nursing mothers. Because statins have the potential for serious adverse reactions in nursing infants, women who require treatment with JUVISYNC should not breastfeed their infants. A small amount of another drug in the statin class passes into breast milk. It is not known whether simvastatin is excreted into human milk.

Undesirable effects

Clinical Trials Experience JUVISYNC

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In a pooled subgroup analysis of 19 controlled clinical studies of sitagliptin involving 1582 patients whose background therapy included simvastatin, incidences of adverse reactions for patients treated with sitagliptin and simvastatin (n=827) were similar to those for patients treated with control therapy (placebo or active comparator) and simvastatin (n=755). Among these patients, 3.3% of the sitagliptin-treated group and 4.2% of controls discontinued due to adverse reactions.

Sitagliptin

In controlled clinical studies as both monotherapy and combination therapy with metformin, pioglitazone, or rosiglitazone and metformin, the overall incidence of adverse reactions, hypoglycemia, and discontinuation of therapy due to clinical adverse reactions with sitagliptin were similar to placebo. In combination with glimepiride, with or without metformin, the overall incidence of clinical adverse reactions with sitagliptin was higher than with placebo, in part related to a higher incidence of hypoglycemia (see Table 4); the incidence of discontinuation due to clinical adverse reactions was similar to placebo.

Two placebo-controlled monotherapy studies, one of 18-and one of 24-week duration, included patients treated with sitagliptin 100 mg daily, sitagliptin 200 mg daily, and placebo. Five placebo-controlled add-on combination therapy studies were also conducted: one with metformin; one with pioglitazone; one with metformin and rosiglitazone; one with glimepiride (with or without metformin); and one with insulin (with or without metformin). In these trials, patients with inadequate glycemic control on a stable dose of the background therapy were randomized to add-on therapy with sitagliptin 100 mg daily or placebo. The adverse reactions, excluding hypoglycemia, reported regardless of investigator assessment of causality in ≥ 5% of patients treated with sitagliptin 100 mg daily and more commonly than in patients treated with placebo, are shown in Table 2 for the clinical trials of at least 18 weeks duration. Incidences of hypoglycemia are shown in Table 4.

Table 2: Placebo-Controlled Clinical Studies of Sitagliptin Monotherapy or Add-on Combination Therapy with Pioglitazone, Metformin + Rosiglitazone, or Glimepiride +/-Metformin: Adverse Reactions (Excluding Hypoglycemia) Reported in ≥ 5% of Patients and More Commonly than in Patients Given Placebo, Regardless of Investigator Assessment of Causality*

Monotherapy (18 or 24 weeks) Number of Patients (%)
Sitagliptin 100 mg Placebo
  N = 443 N = 363
Nasopharyngitis 23 (5.2) 12 (3.3)
Combination with Pioglitazone (24 weeks) Sitagliptin 100 mg + Pioglitazone Placebo + Pioglitazone
  N = 175 N = 178
Upper Respiratory Tract Infection 11 (6.3) 6 (3.4)
Headache 9 (5.1) 7 (3.9)
Combination with Metformin + Rosiglitazone (18 weeks) Sitagliptin 100 mg + Metformin + Rosiglitazone Placebo + Metformin + Rosiglitazone
  N = 181 N = 97
Upper Respiratory Tract Infection 10 (5.5) 5 (5.2)
Nasopharyngitis 11 (6.1) 4 (4.1)
Combination with Glimepiride (+/-Metformin) (24 weeks) Sitagliptin 100 mg + Glimepiride (+/-Metformin) Placebo + Glimepiride (+/-Metformin)
  N = 222 N = 219
Nasopharyngitis 14 (6.3) 10 (4.6)
Headache 13 (5.9) 5 (2.3)
* Intent-to-treat population

In the 24-week study of patients receiving sitagliptin as add-on combination therapy with metformin, there were no adverse reactions reported regardless of investigator assessment of causality in ≥ 5% of patients and more commonly than in patients given placebo.

In the 24-week study of patients receiving sitagliptin as add-on therapy to insulin (with or without metformin), there were no adverse reactions reported regardless of investigator assessment of causality in ≥ 5% of patients and more commonly than in patients given placebo, except for hypoglycemia (see Table 4).

In the study of sitagliptin as add-on combination therapy with metformin and rosiglitazone (Table 2), through W eek 54 the adverse reactions reported regardless of investigator assessment of causality in ≥ 5% of patients treated with sitagliptin and more commonly than in patients treated with placebo were: upper respiratory tract infection (sitagliptin, 15.5%; placebo, 6.2%), nasopharyngitis (11.0%, 9.3%), peripheral edema (8.3%, 5.2%), and headache (5.5%, 4.1%).

In a pooled analysis of the two monotherapy studies, the add-on to metformin study, and the add-on to pioglitazone study, the incidence of selected gastrointestinal adverse reactions in patients treated with sitagliptin was as follows: abdominal pain (sitagliptin 100 mg, 2.3%; placebo, 2.1%), nausea (1.4%, 0.6%), and diarrhea (3.0%, 2.3%).

In an additional, 24-week, placebo-controlled factorial study of initial therapy with sitagliptin in combination with metformin, the adverse reactions reported (regardless of investigator assessment of causality) in ≥ 5% of patients are shown in Table 3.

Table 3: Initial Therapy with Combination of Sitagliptin and Metformin: Adverse Reactions Reported (Regardless of Investigator Assessment of Causality) in ≥ 5% of Patients Receiving Combination Therapy (and Greater than in Patients Receiving Metformin alone, Sitagliptin alone, and Placebo)*

  Number of Patients (%)
Placebo
N = 176
Sitagliptin 100 mg QD
N = 179
Metformin 500 or 1000 mg bid†
N = 364†
Sitagliptin 50 mg bid + Metformin 500 or 1000 mg bid†
N = 372†
Upper Respiratory Infection 9 (5.1) 8 (4.5) 19 (5.2) 23 (6.2)
Headache 5 (2.8) 2 (1.1) 14 (3.8) 22 (5.9)
* Intent-to-treat population.
† Data pooled for the patients given the lower and higher doses of metformin.

In a 24-week study of initial therapy with sitagliptin in combination with pioglitazone, there were no adverse reactions reported (regardless of investigator assessment of causality) in ≥ 5% of patients and more commonly than in patients given pioglitazone alone.

No clinically meaningful changes in vital signs or in ECG (including in QTc interval) were observed in patients treated with sitagliptin.

In a pooled analysis of 19 double-blind clinical trials that included data from 10,246 patients randomized to receive sitagliptin 100 mg/day (N=5429) or corresponding (active or placebo) control (N=4817), the incidence of acute pancreatitis was 0.1 per 100 patient-years in each group (4 patients with an event in 4708 patient-years for sitagliptin and 4 patients with an event in 3942 patient-years for control). Hypoglycemia

In the sitagliptin clinical trial program, adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia. A concurrent blood glucose measurement was not required although most (74%) reports of hypoglycemia were accompanied by a blood glucose measurement ≤ 70 mg/dL. When sitagliptin was coadministered with a sulfonylurea or with insulin, the percentage of patients with at least one adverse reaction of hypoglycemia was higher than in the corresponding placebo group (Table 4).

Table 4: Incidence and Rate of Hypoglycemia* in Placebo-Controlled Clinical Studies when Sitagliptin was used as Add-On Therapy to Glimepiride (with or without Metformin) or Insulin (with or without Metformin), Regardless of Investigator Assessment of Causality

Add-On to Glimepiride (+/-Metformin) (24 weeks) Sitagliptin 100 mg + Glimepiride (+/-Metformin) Placebo + Glimepiride (+/-Metformin)
  N = 222 N = 219
Overall (%) 27 (12.2) 4 (1.8)
Rate (episodes/patient-year)† 0.59 0.24
Severe (%)‡ 0 (0.0) 0 (0.0)
Add-On to Insulin (+/-Metformin) (24 weeks) Sitagliptin 100 mg + Insulin (+/-Metformin) Placebo + Insulin (+/-Metformin)
  N = 322 N = 319
Overall (%) 50 (15.5) 25 (7.8)
Rate (episodes/patient-year)† 1.06 0.51
Severe (%)‡ 2 (0.6) 1 (0.3)
* Adverse reactions of hypoglycemia were based on all reports of symptomatic hypoglycemia; a concurrent glucose measurement was not required; intent-to-treat population.
† Based on total number of events (i.e., a single patient may have had multiple events).
‡ Severe events of hypoglycemia were defined as those events requiring medical assistance or exhibiting depressed level/loss of consciousness or seizure.

In a pooled analysis of the two monotherapy studies, the add-on to metformin study, and the add-on to pioglitazone study, the overall incidence of adverse reactions of hypoglycemia was 1.2% in patients treated with sitagliptin 100 mg and 0.9% in patients treated with placebo.

In the study of sitagliptin as add-on combination therapy with metformin and rosiglitazone, the overall incidence of hypoglycemia was 2.2% in patients given add-on sitagliptin and 0.0% in patients given add-on placebo through Week 18. Through Week 54, the overall incidence of hypoglycemia was 3.9% in patients given add-on sitagliptin and 1.0% in patients given add-on placebo.

In the 24-week, placebo-controlled factorial study of initial therapy with sitagliptin in combination with metformin, the incidence of hypoglycemia was 0.6% in patients given placebo, 0.6% in patients given sitagliptin alone, 0.8% in patients given metformin alone, and 1.6% in patients given sitagliptin in combination with metformin.

In the study of sitagliptin as initial therapy with pioglitazone, one patient taking sitagliptin experienced a severe episode of hypoglycemia. There were no severe hypoglycemia episodes reported in other studies except in the study involving coadministration with insulin.

Simvastatin

In the pre-marketing controlled clinical studies and their open-label extensions (2423 patients with median duration of follow-up of approximately 18 months), 1.4% of patients were discontinued due to adverse reactions. The most common adverse reactions that led to treatment discontinuation were: gastrointestinal disorders (0.5%), myalgia (0.1%), and arthralgia (0.1%). The most commonly reported adverse reactions (incidence ≥ 5%) in simvastatin controlled clinical trials were: upper respiratory infections (9.0%), headache (7.4%), abdominal pain (7.3%), constipation (6.6%), and nausea (5.4%).

Scandinavian Simvastatin Survival Study

In 4S involving 4444 patients (age range 35-71 years, 19% women, 100% Caucasians) treated with 20-40 mg/day of simvastatin (n=2221) or placebo (n=2223) over a median of 5.4 years, adverse reactions reported in ≥ 2% of patients and at a rate greater than placebo are shown in Table 5.

Table 5: Adverse Reactions Reported Regardless of Causality by ≥ 2% of Patients Treated with Simvastatin and Greater than Placebo in 4S

  Simvastatin
(N = 2221) %
Placebo
(N = 2223) %
Body as a Whole
  Edema/swelling 2.7 2.3
  Abdominal pain 5.9 5.8
Cardiovascular System Disorders
  Atrial fibrillation 5.7 5.1
Digestive System Disorders
  Constipation 2.2 1.6
  Gastritis 4.9 3.9
Endocrine Disorders
  Diabetes mellitus 4.2 3.6
Musculoskeletal Disorders
  Myalgia 3.7 3.2
Nervous System/ Psychiatric Disorders
  Headache 2.5 2.1
  Insomnia 4.0 3.8
  Vertigo 4.5 4.2
Respiratory System Disorders
  Bronchitis 6.6 6.3
  Sinusitis 2.3 1.8
Skin / Skin Appendage Disorders
  Eczema 4.5 3
Urogenital System Disorders
  Infection, urinary tract 3.2 3.1
Heart Protection Study

In the Heart Protection Study (HPS), involving 20,536 patients (age range 40-80 years, 25% women, 97% Caucasians, 3% other races) treated with simvastatin 40 mg/day (n=10,269) or placebo (n=10,267) over a mean of 5 years, only serious adverse reactions and discontinuations due to any adverse reactions were recorded. Discontinuation rates due to adverse reactions were 4.8% in patients treated with simvastatin compared with 5.1% in patients treated with placebo. The incidence of myopathy/rhabdomyolysis was < 0.1% in patients treated with simvastatin.

Other Clinical Studies

In a clinical trial in which 12,064 patients with a history of myocardial infarction were treated with simvastatin (mean follow-up 6.7 years), the incidence of myopathy (defined as unexplained muscle weakness or pain with a serum creatine kinase [CK] > 10 times upper limit of normal [ULN]) in patients on 20 mg/day was approximately 0.02%; in patients treated with 80 mg/day, the incidence was 0.9%. The incidence of rhabdomyolysis (defined as myopathy with a CK > 40 times ULN) in patients on 20 mg/day was 0%; in patients on 80 mg/day, the incidence was approximately 0.4%. The incidence of myopathy, including rhabdomyolysis, was highest during the first year and then notably decreased during the subsequent years of treatment. In this trial, patients were carefully monitored and some interacting medicinal products were excluded.

Other adverse reactions reported in clinical trials were: diarrhea, rash, dyspepsia, flatulence, and asthenia.

Laboratory Tests Sitagliptin

Across clinical studies, the incidence of laboratory adverse reactions was similar in patients treated with sitagliptin 100 mg compared to patients treated with placebo. A small increase in white blood cell count (WBC) was observed due to an increase in neutrophils. This increase in WBC (of approximately 200 cells/microL vs placebo, in four pooled placebo-controlled clinical studies, with a mean baseline WBC count of approximately 6600 cells/microL) is not considered to be clinically relevant. In a 12-week study of 91 patients with chronic renal impairment, 37 patients with moderate renal impairment were randomized to sitagliptin 50 mg daily, while 14 patients with the same magnitude of renal impairment were randomized to placebo. Mean (SE) increases in serum creatinine were observed in patients treated with sitagliptin [0.12 mg/dL (0.04)] and in patients treated with placebo [0.07 mg/dL (0.07)]. The clinical significance of this added increase in serum creatinine relative to placebo is not known.

Simvastatin

Marked persistent increases of hepatic transaminases have been noted. Elevated alkaline phosphatase and γ-glutamyl transpeptidase have also been reported. About 5% of patients had elevations of CK levels of 3 or more times the normal value on one or more occasions. This was attributable to the noncardiac fraction of CK.

Postmarketing Experience

Additional adverse reactions have been identified during postapproval use of sitagliptin (as monotherapy and/or in combination with other antihyperglycemic agents) or simvastatin. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Anemia; depression; headache; dizziness; paresthesia; peripheral neuropathy; interstitial lung disease; pancreatitis; acute pancreatitis, including fatal and non-fatal hemorrhagic and necrotizing pancreatitis ; constipation; vomiting; hepatitis/jaundice; fatal and non-fatal hepatic failure; hepatic enzyme elevations; pruritus; alopecia; a variety of skin changes (e.g., nodules, discoloration, dryness of skin/mucous membranes, changes to hair/nails); muscle cramps; myalgia; rhabdomyolysis; arthralgia; pain in extremity; back pain; worsening renal function, including acute renal failure (sometimes requiring dialysis); erectile dysfunction.

There have been rare reports of immune-mediated necrotizing myopathy associated with statin use.

There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).

Hypersensitivity reactions including anaphylaxis, angioedema, rash, urticaria, cutaneous vasculitis, and exfoliative skin conditions including Stevens-Johnson syndrome have been reported with sitagliptin.

An apparent hypersensitivity syndrome has been reported rarely with simvastatin which has included some of the following features: anaphylaxis, angioedema, lupus erythematous-like syndrome, polymyalgia rheumatica, dermatomyositis, vasculitis, purpura, thrombocytopenia, leukopenia, hemolytic anemia, positive ANA, ESR increase, eosinophilia, arthritis, arthralgia, urticaria, asthenia, photosensitivity, fever, chills, flushing, malaise, dyspnea, toxic epidermal necrolysis, erythema multiforme, including Stevens-Johnson syndrome.

Therapeutic indications

JUVISYNC™ (sitagliptin and simvastatin) is indicated in patients for whom treatment with both sitagliptin and simvastatin is appropriate.

Sitagliptin

Sitagliptin is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

Simvastatin

Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. In patients with coronary heart disease (CHD) or at high risk of CHD, simvastatin can be started simultaneously with diet.

Reductions in Risk of CHD Mortality and Cardiovascular Events

In patients at high risk of coronary events because of existing coronary heart disease, diabetes, peripheral vessel disease, history of stroke or other cerebrovascular disease, simvastatin is indicated to:

  • Reduce the risk of total mortality by reducing CHD deaths.
  • Reduce the risk of non-fatal myocardial infarction and stroke.
  • Reduce the need for coronary and non-coronary revascularization procedures.
Hyperlipidemia

Simvastatin is indicated to:

  • Reduce elevated total cholesterol (total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B), and triglycerides (TG), and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hyperlipidemia (Fredrickson type IIa, heterozygous familial and nonfamilial) or mixed dyslipidemia (Fredrickson type IIb).
  • Reduce elevated TG in patients with hypertriglyceridemia (Fredrickson type lV hyperlipidemia).
  • Reduce elevated TG and VLDL-C in patients with primary dysbetalipoproteinemia (Fredrickson type lll hyperlipidemia).
  • Reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia (HoFH) as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) or if such treatments are unavailable.
Important Limitations Of Use

JUVISYNC should not be used in patients with type 1 diabetes or for the treatment of diabetic ketoacidosis, as it would not be effective in these settings.

JUVISYNC has not been studied in patients with a history of pancreatitis. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using JUVISYNC.

JUVISYNC has not been studied in conditions where the major abnormality is elevation of chylomicrons (i.e., hyperlipidemia Fredrickson types I and V).

Because doses of JUVISYNC appropriate for patients with severe renal impairment (CrCl < 30 mL/min, approximately corresponding to serum creatinine levels of > 3.0 mg/dL in men and > 2.5 mg/dL in women) or end-stage renal disease (ESRD) are not available in this combination product, JUVISYNC is not recommended in patients with severe renal impairment or ESRD.

Pharmacodynamic properties

Sitagliptin

General

In patients with type 2 diabetes, administration of sitagliptin led to inhibition of DPP-4 enzyme activity for a 24-hour period. After an oral glucose load or a meal, this DPP-4 inhibition resulted in a 2-to 3-fold increase in circulating levels of active GLP-1 and GIP, decreased glucagon concentrations, and increased responsiveness of insulin release to glucose, resulting in higher C-peptide and insulin concentrations. The rise in insulin with the decrease in glucagon was associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal.

In a two-day study in healthy subjects, sitagliptin alone increased active GLP-1 concentrations, whereas metformin alone increased active and total GLP-1 concentrations to similar extents. Coadministration of sitagliptin and metformin had an additive effect on active GLP-1 concentrations. Sitagliptin, but not metformin, increased active GIP concentrations. It is unclear how these findings relate to changes in glycemic control in patients with type 2 diabetes.

In studies with healthy subjects, sitagliptin did not lower blood glucose or cause hypoglycemia.

Cardiac Electrophysiology

In a randomized, placebo-controlled crossover study, 79 healthy subjects were administered a single oral dose of sitagliptin 100 mg, sitagliptin 800 mg (8 times the recommended dose), and placebo. At the recommended dose of 100 mg, there was no effect on the QTc interval obtained at the peak plasma concentration, or at any other time during the study. Following the 800 mg dose, the maximum increase in the placebo-corrected mean change in QTc from baseline was observed at 3 hours postdose and was 8.0 msec. This increase is not considered to be clinically significant. At the 800 mg dose, peak sitagliptin plasma concentrations were approximately 11 times higher than the peak concentrations following a 100 mg dose.

In patients with type 2 diabetes administered sitagliptin 100 mg (N=81) or sitagliptin 200 mg (N=63) daily, there were no meaningful changes in QTc interval based on ECG data obtained at the time of expected peak plasma concentration.

Simvastatin

Epidemiological studies have demonstrated that elevated levels of total-C, LDL-C, as well as decreased levels of HDL-C are associated with the development of atherosclerosis and increased cardiovascular risk. Lowering LDL-C decreases this risk. However, the independent effect of raising HDL-C or lowering TG on the risk of coronary and cardiovascular morbidity and mortality has not been determined.

Pharmacokinetic properties

General

JUVISYNC

The results of bioequivalence studies in healthy subjects demonstrated that JUVISYNC (sitagliptin and simvastatin) is bioequivalent to coadministration of sitagliptin and simvastatin as individual tablets.

Sitagliptin and simvastatin do not have a clinically meaningful pharmacokinetic interaction.

Absorption

JUVISYNC

A high-fat breakfast did not affect sitagliptin exposure following administration of JUVISYNC, while simvastatin AUC decreased by 24%, simvastatin Cmax increased by 20%, and simvastatin acid AUC and Cmax increased by 37% and 116%, respectively. The clinical significance of the above exposure changes in simvastatin and simvastatin acid is not known. JUVISYNC is recommended to be taken in the evening as indicated in simvastatin labeling.

Sitagliptin

The pharmacokinetics of sitagliptin has been extensively characterized in healthy subjects and patients with type 2 diabetes. After oral administration of a 100 mg dose to healthy subjects, sitagliptin was rapidly absorbed, with peak plasma concentrations (median Tmax) occurring 1 to 4 hours postdose. Plasma AUC of sitagliptin increased in a dose-proportional manner. Following a single oral 100 mg dose to healthy volunteers, mean plasma AUC of sitagliptin was 8.52 μM•hr, Cmax was 950 nM, and apparent terminal half-life (t½) was 12.4 hours. Plasma AUC of sitagliptin increased approximately 14% following 100 mg doses at steady-state compared to the first dose. The intra-subject and inter-subject coefficients of variation for sitagliptin AUC were small (5.8% and 15.1%). The pharmacokinetics of sitagliptin was generally similar in healthy subjects and in patients with type 2 diabetes.

The absolute bioavailability of sitagliptin is approximately 87%.

Simvastatin

Simvastatin is a lactone that is readily hydrolyzed in vivo to the corresponding β-hydroxyacid (simvastatin acid), a potent inhibitor of HMG-CoA reductase.

Peak plasma concentrations of simvastatin lactone and simvastatin acid were attained within 1.5 and 4-6 hours postdose, respectively. For simvastatin no substantial deviation from linearity of AUC of inhibitors in the general circulation was observed at doses up to 120 mg.

Distribution

Sitagliptin

The mean volume of distribution at steady state following a single 100 mg intravenous dose of sitagliptin to healthy subjects is approximately 198 liters. The fraction of sitagliptin reversibly bound to plasma proteins is low (38%).

Simvastatin

Both simvastatin and its β-hydroxyacid metabolite are highly bound (approximately 95%) to human plasma proteins. Rat studies indicate that when radiolabeled simvastatin was administered, simvastatin­derived radioactivity crossed the blood-brain barrier.

Metabolism

Sitagliptin

Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination.

Following a [14C]sitagliptin oral dose, approximately 16% of the radioactivity was excreted as metabolites of sitagliptin. Six metabolites were detected at trace levels and are not expected to contribute to the plasma DPP-4 inhibitory activity of sitagliptin. In vitro studies indicated that the primary enzyme responsible for the limited metabolism of sitagliptin was CYP3A4, with contribution from CYP2C8.

Simvastatin

The major active metabolites of simvastatin present in human plasma are the β-hydroxyacid of simvastatin and its 6'-hydroxy, 6'-hydroxymethyl, and 6'-exomethylene derivatives. Since simvastatin undergoes extensive first-pass extraction in the liver, the availability of the drug to the general circulation is low ( < 5%).

Excretion

Sitagliptin

Following administration of an oral [14C]sitagliptin dose to healthy subjects, approximately 100% of the administered radioactivity was eliminated in feces (13%) or urine (87%) within one week of dosing. The apparent terminal t½ following a 100 mg oral dose of sitagliptin was approximately 12.4 hours and renal clearance was approximately 350 mL/min.

Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin. The clinical relevance of hOAT-3 in sitagliptin transport has not been established. Sitagliptin is also a substrate of p-glycoprotein, which may also be involved in mediating the renal elimination of sitagliptin. However, cyclosporine, a p-glycoprotein inhibitor, did not reduce the renal clearance of sitagliptin.

Simvastatin

Following an oral dose of 14C-labeled simvastatin in man, 13% of the dose was excreted in urine and 60% in feces. Plasma concentrations of total radioactivity (simvastatin plus 14C-metabolites) peaked at 4 hours and declined rapidly to about 10% of peak by 12 hours postdose.

Date of revision of the text

Feb 2014

Name of the medicinal product

Juvisync

Fertility, pregnancy and lactation

Pregnancy Category X

JUVISYNC

JUVISYNC is contraindicated in women who are or may become pregnant. Lipid-lowering drugs offer no benefit during pregnancy, because cholesterol and cholesterol derivatives are needed for normal fetal development. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy. There are no adequate and well-controlled studies of use of JUVISYNC during pregnancy; however, there are rare reports of congenital anomalies in infants exposed to statins in utero. Animal reproduction studies of simvastatin in rats and rabbits showed no evidence of teratogenicity. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Because statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, JUVISYNC may cause fetal harm when administered to a pregnant woman. If JUVISYNC is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.

Women of childbearing potential, who require treatment with JUVISYNC for a lipid disorder, should be advised to use effective contraception. For women trying to conceive, discontinuation of JUVISYNC should be considered. If pregnancy occurs, JUVISYNC should be immediately discontinued.

Sitagliptin

Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin up to 125 mg/kg (approximately 12 times the human exposure at the maximum recommended human dose) did not impair fertility or harm the fetus. There are, however, no adequate and well-controlled studies in pregnant women.

Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30-and 20-times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD.

Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats.

Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30% at 24 hours.

Simvastatin

Simvastatin was not teratogenic in rats or rabbits at doses (25, 10 mg/kg/day, respectively) that resulted in 6 times the human exposure based on mg/m² surface area. However, in studies with another structurally-related statin, skeletal malformations were observed in rats and mice.

There are rare reports of congenital anomalies following intrauterine exposure to statins. In a review of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or another structurally related statin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed those expected in the general population. However, the study was only able to exclude a 3-to 4-fold increased risk of congenital anomalies over the background rate. In 89% of these cases, drug treatment was initiated prior to pregnancy and was discontinued during the first trimester when pregnancy was identified.

Qualitative and quantitative composition

Dosage Forms And Strengths
  • JUVISYNC 100 mg/10 mg tablets are pink-beige, bi-convex round, film-coated tablets, coded with the Merck logo and “753” on one side and plain on the other.
  • JUVISYNC 100 mg/20 mg tablets are pink-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “757” on one side and plain on the other.
  • JUVISYNC 100 mg/40 mg tablets are orange-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “773” on one side and plain on the other.
  • JUVISYNC 50 mg/10 mg tablets are red, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “533” on one side and plain on the other.
  • JUVISYNC 50 mg/20 mg tablets are orange-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “535” on one side and plain on the other.
  • JUVISYNC 50 mg/40 mg tablets are red, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “537” on one side and plain on the other.
Storage And Handling

JUVISYNC 100 mg/10 mg tablets are pink-beige, bi-convex round, film-coated tablets, coded with the Merck logo and “753” on one side and plain on the other. They are supplied as follows:

NDC 0006-0753-31 unit of use bottles of 30
NDC 0006-0753-54 unit of use bottles of 90
NDC 0006-0753-82 bottles of 1000.

JUVISYNC 100 mg/20 mg tablets are pink-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “757” on one side and plain on the other. They are supplied as follows:

NDC 0006-0757-31 unit of use bottles of 30
NDC 0006-0757-54 unit of use bottles of 90
NDC 0006-0757-82 bottles of 1000.

JUVISYNC 100 mg/40 mg tablets are orange-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “773” on one side and plain on the other. They are supplied as follows:

NDC 0006-0773-31 unit of use bottles of 30
NDC
0006-0773-54 unit of use bottles of 90
NDC 0006-0773-82 bottles of 1000.

JUVISYNC 50 mg/10 mg tablets are red, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “533” on one side and plain on the other. They are supplied as follows:

NDC 0006-0533-31 unit of use bottles of 30
NDC 0006-0533-54 unit of use bottles of 90

JUVISYNC 50 mg/20 mg tablets are orange-beige, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “535” on one side and plain on the other. They are supplied as follows:

NDC 0006-0535-31 unit of use bottles of 30
NDC 0006-0535-54 unit of use bottles of 90

JUVISYNC 50 mg/40 mg tablets are red, bi-convex modified capsule-shaped, film-coated tablets, coded with the Merck logo and “537” on one side and plain on the other. They are supplied as follows:

NDC 0006-0537-31 unit of use bottles of 30
NDC 0006-0537-54 unit of use bottles of 90

Storage

Store at 20-25°C (68-77°F), excursions permitted to 15-30°C (59-86°F). Store in a dry place with cap tightly closed.

Storage of 1000 count bottles

Dispense into a USP tightly closed, moisture-resistant container.

Manufactured for: Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Whitehouse Station, NJ 08889, USA. Manufactured by: MSD International GmbH Clonmel, Co. Tipperary, Ireland. Revised: Feb 2014

Special warnings and precautions for use

WARNINGS

Included as part of the PRECAUTIONS section.

PRECAUTIONS Pancreatitis

There have been postmarketing reports of acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, in patients taking sitagliptin. After initiation of JUVISYNC, patients should be observed carefully for signs and symptoms of pancreatitis. If pancreatitis is suspected, JUVISYNC should promptly be discontinued and appropriate management should be initiated. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using JUVISYNC.

Myopathy/Rhabdomyolysis

Simvastatin occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase (CK) above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of statin activity in plasma. Predisposing factors for myopathy include advanced age ( ≥ 65 years), female gender, uncontrolled hypothyroidism, and renal impairment.

The risk of myopathy, including rhabdomyolysis, is dose related. In a clinical trial database in which 41,413 patients were treated with simvastatin, 24,747 (approximately 60%) of whom were enrolled in studies with a median follow-up of at least 4 years, the incidence of myopathy was approximately 0.03% and 0.08% at 20 and 40 mg/day, respectively. The incidence of myopathy with 80 mg (0.61%) was disproportionately higher than that observed at the lower doses. In these trials, patients were carefully monitored and some interacting medicinal products were excluded.

In a clinical trial in which 12,064 patients with a history of myocardial infarction were treated with simvastatin (mean follow-up 6.7 years), the incidence of myopathy (defined as unexplained muscle weakness or pain with a serum creatine kinase [CK] > 10 times upper limit of normal [ULN]) in patients on 20 mg/day was approximately 0.02%; in patients treated with 80 mg/day, the incidence was 0.9%. The incidence of rhabdomyolysis (defined as myopathy with a CK > 40 times ULN) in patients on 20 mg/day was 0%; in patients on 80 mg/day, the incidence was approximately 0.4%. The incidence of myopathy, including rhabdomyolysis, was highest during the first year and then notably decreased during the subsequent years of treatment. In this trial, patients were carefully monitored and some interacting medicinal products were excluded.

There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.

All patients starting therapy with JUVISYNC, or whose dose of JUVISYNC is being increased, should be advised of the risk of myopathy, including rhabdomyolysis, and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing JUVISYNC. JUVISYNC therapy should be discontinued immediately if myopathy is diagnosed or suspected. In most cases, muscle symptoms and CK increases resolved when treatment was promptly discontinued. Periodic CK determinations may be considered in patients starting therapy with JUVISYNC or whose dose is being increased, but there is no assurance that such monitoring will prevent myopathy.

Many of the patients who have developed rhabdomyolysis on therapy with simvastatin have had complicated medical histories, including renal impairment usually as a consequence of long-standing diabetes mellitus. Such patients merit closer monitoring. JUVISYNC therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. JUVISYNC therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy.

Drug Interactions

The risk of myopathy and rhabdomyolysis is increased by high levels of statin activity in plasma. Simvastatin is metabolized by the cytochrome P450 isoform 3A4. Certain drugs which inhibit this metabolic pathway can raise the plasma levels of simvastatin and may increase the risk of myopathy. These include itraconazole, ketoconazole, posaconazole, and voriconazole, the macrolide antibiotics erythromycin and clarithromycin, the ketolide antibiotic telithromycin, HIV protease inhibitors, boceprevir, telaprevir, the antidepressant nefazodone, cobicistat-containing products, and grapefruit juice. Combination of these drugs with JUVISYNC is contraindicated. If short-term treatment with strong CYP3A4 inhibitors is unavoidable, therapy with JUVISYNC must be suspended during the course of treatment.

The combined use of JUVISYNC with gemfibrozil, cyclosporine, or danazol is contraindicated.

Caution should be used when prescribing other fibrates with JUVISYNC, as these agents can cause myopathy when given alone and the risk is increased when they are coadministered.

Cases of myopathy, including rhabdomyolysis, have been reported with simvastatin coadministered with colchicine, and caution should be exercised when prescribing JUVISYNC with colchicine.

The benefits of the combined use of JUVISYNC with the following drugs should be carefully weighed against the potential risks of combinations: amiodarone, dronedarone, verapamil, diltiazem, amlodipine, ranolazine and lipid-lowering drugs other than gemfibrozil (other fibrates, ≥ 1 g/day of niacin, or, for patients with HoFH, lomitapide), [also see DOSAGE AND ADMINISTRATION, Patients with Homozygous Familial Hypercholesterolemia].

Cases of myopathy, including rhabdomyolysis, have been observed with simvastatin coadministered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. In an ongoing, double-blind, randomized cardiovascular outcomes trial, an independent safety monitoring committee identified that the incidence of myopathy is higher in Chinese compared with non-Chinese patients taking simvastatin 40 mg coadministered with lipid-modifying doses of a niacin-containing product. Caution should be used when treating Chinese patients with JUVISYNC 100 mg/40 mg or 50 mg/40 mg per day coadministered with lipid-modifying doses of niacin-containing products. It is unknown if the risk for myopathy with coadministration of JUVISYNC with lipid-modifying doses of niacin-containing products observed in Chinese patients applies to other Asian patients.

Prescribing recommendations for interacting agents are summarized in Table 1.

Table 1: Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis

Interacting Agents Prescribing Recommendations
Strong CYP3A4 Inhibitors, e.g.:
Itraconazole
Ketoconazole
Posaconazole
Voriconazole
Erythromycin
Clarithromycin
Telithromycin
HIV protease inhibitors
Boceprevir
Telaprevir
Nefazodone
Cobicistat-containing products
Gemfibrozil
Cyclosporine
Danazol
Contraindicated with JUVISYNC
Verapamil
Diltiazem
Dronedarone
Do not exceed 10 mg simvastatin (100 mg/10 mg or 50 mg/10 mg JUVISYNC) daily
Amiodarone
Amlodipine
Ranolazine
Do not exceed 20 mg simvastatin (100 mg/20 mg or 50 mg/20 mg JUVISYNC) daily
Lomitapide For patients with HoFH, do not exceed 20 mg simvastatin (100 mg/20 mg or 50 mg/20 mg JUVISYNC) daily*
Grapefruit juice Avoid grapefruit juice
* For patients with HoFH who have been taking 80 mg simvastatin chronically (e.g., for 12 months or more) without evidence of muscle toxicity, do not exceed 40 mg simvastatin when taking lomitapide.
Liver Dysfunction

Persistent increases (to more than 3X the ULN) in serum transaminases have occurred in approximately 1% of patients who received simvastatin in clinical studies. When drug treatment was interrupted or discontinued in these patients, the transaminase levels usually fell slowly to pretreatment levels. The increases were not associated with jaundice or other clinical signs or symptoms. There was no evidence of hypersensitivity.

In the Scandinavian Simvastatin Survival Study (4S) , the number of patients with more than one transaminase elevation to > 3X ULN, over the course of the study, was not significantly different between the simvastatin and placebo groups (14 [0.7%] vs. 12 [0.6%]). Elevated transaminases resulted in the discontinuation of 8 patients from therapy in the simvastatin group (n=2221) and 5 in the placebo group (n=2223). Of the 1986 simvastatin treated patients in 4S with normal liver function tests (LFTs) at baseline, 8 (0.4%) developed consecutive LFT elevations to > 3X ULN and/or were discontinued due to transaminase elevations during the 5.4 years (median follow-up) of the study. Among these 8 patients, 5 initially developed these abnormalities within the first year. All of the patients in this study received a starting dose of 20 mg of simvastatin; 37% were titrated to 40 mg.

In 2 controlled clinical studies in 1105 patients, the 12-month incidence of persistent hepatic transaminase elevation without regard to drug relationship was 0.9% and 2.1% at the 40 and 80 mg dose, respectively. No patients developed persistent liver function abnormalities following the initial 6 months of treatment at a given dose.

It is recommended that liver function tests be performed before the initiation of treatment, and thereafter when clinically indicated. There have been rare postmarketing reports of fatal and non­fatal hepatic failure in patients taking statins, including simvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with JUVISYNC, promptly interrupt therapy. If an alternate etiology is not found do not restart JUVISYNC. Note that ALT may emanate from muscle, therefore ALT rising with CK may indicate myopathy.

The drug should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver diseases or unexplained transaminase elevations are contraindications to the use of JUVISYNC.

As with other lipid-lowering agents, moderate (less than 3X ULN) elevations of serum transaminases have been reported following therapy with simvastatin. These changes appeared soon after initiation of therapy with simvastatin, were often transient, were not accompanied by any symptoms and did not require interruption of treatment.

Renal Impairment

Assessment of renal function is recommended prior to initiating JUVISYNC and periodically thereafter. JUVISYNC is not recommended for use in patients with severe renal impairment or ESRD because doses of JUVISYNC appropriate for patients with severe renal impairment or ESRD are not available in this combination product.

A dosage adjustment is recommended in patients with moderate renal impairment. Caution should be used to ensure that the correct dose of JUVISYNC is prescribed for patients with moderate renal impairment (creatinine clearance ≥ 30 to < 50 mL/min).

There have been postmarketing reports of worsening renal function, including acute renal failure, sometimes requiring dialysis, in patients treated with sitagliptin. A subset of these reports involved patients with renal impairment, some of whom were prescribed inappropriate doses of sitagliptin. A return to baseline levels of renal impairment has been observed with supportive treatment and discontinuation of potentially causative agents.

Sitagliptin has not been found to be nephrotoxic in preclinical studies at clinically relevant doses, or in clinical trials.

Use With Medications Known To Cause Hypoglycemia

When sitagliptin was used in combination with a sulfonylurea or with insulin, medications known to cause hypoglycemia, the incidence of hypoglycemia was increased over that of placebo used in combination with a sulfonylurea or with insulin. Therefore, a lower dose of sulfonylurea or insulin may be required to reduce the risk of hypoglycemia.

Hypersensitivity Reactions

There have been postmarketing reports of serious hypersensitivity reactions in patients treated with sitagliptin. These reactions include anaphylaxis, angioedema, and exfoliative skin conditions including Stevens-Johnson syndrome. Onset of these reactions occurred within the first 3 months after initiation of treatment with sitagliptin, with some reports occurring after the first dose.

If a hypersensitivity reaction is suspected, discontinue JUVISYNC, assess for other potential causes for the event, and institute alternative treatment.

Angioedema has also been reported with other dipeptidyl peptidase-4 (DPP-4) inhibitors. Use caution in a patient with a history of angioedema with another DPP-4 inhibitor because it is unknown whether such patients will be predisposed to angioedema with JUVISYNC.

Endocrine Function

Increases in A1C and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including simvastatin.

Patient Counseling Information

See FDA-Approved Patient Labeling (Medication Guide).

Instructions

Patients should be informed of the potential risks and benefits of JUVISYNC and of alternative modes of therapy. Patients should also be informed about the importance of adherence to dietary instructions, regular physical activity, periodic blood glucose monitoring and A1C testing, recognition and management of hypoglycemia and hyperglycemia, and assessment for diabetes complications. During periods of stress such as fever, trauma, infection, or surgery, medication requirements may change and patients should be advised to seek medical advice promptly.

Patients should be informed that acute pancreatitis has been reported during postmarketing use of sitagliptin. Patients should be informed that persistent severe abdominal pain, sometimes radiating to the back, which may or may not be accompanied by vomiting, is the hallmark symptom of acute pancreatitis. Patients should be instructed to promptly discontinue JUVISYNC and contact their physician if persistent severe abdominal pain occurs .

Patients should be informed that the incidence of hypoglycemia is increased when sitagliptin is added to a sulfonylurea or insulin and that a lower dose of the sulfonylurea or insulin may be required to reduce the risk of hypoglycemia.

Patients should be informed that allergic reactions have been reported during postmarketing use of sitagliptin. If symptoms of allergic reactions (including rash, hives, and swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing) occur, patients must stop taking JUVISYNC and seek medical advice promptly.

Patients should be informed that the tablets must never be split or divided before swallowing.

Physicians should instruct their patients to read the Medication Guide before starting JUVISYNC therapy and to reread each time the prescription is renewed. Patients should be instructed to inform their doctor or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens.

Patients should be advised to adhere to their National Cholesterol Education Program (NCEP)­recommended diet, a regular exercise program, and periodic testing of a fasting lipid panel.

Patients should be advised about substances they should not take concomitantly with JUVISYNC. Patients should also be advised to inform other healthcare professionals prescribing a new medication or increasing the dose of an existing medication that they are taking JUVISYNC.

Laboratory Tests

Patients should be informed that response to JUVISYNC should be monitored by periodic measurements of blood glucose, A1C, and cholesterol levels, with a goal of decreasing these levels towards the normal range. A1C is especially useful for evaluating long-term glycemic control. Patients should be informed of the potential need to adjust the dose or discontinue JUVISYNC based on changes in renal function test results over time.

It is recommended that liver function tests be performed before the initiation of JUVISYNC, and thereafter when clinically indicated. All patients treated with JUVISYNC should be advised to report promptly any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice.

Muscle Pain

All patients starting therapy with JUVISYNC should be advised of the risk of myopathy, including rhabdomyolysis, and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing JUVISYNC. The risk of myopathy, including rhabdomyolysis, occurring with use of JUVISYNC is increased when taking certain types of medication or consuming grapefruit juice. Patients should discuss all medication, both prescription and over the counter, with their healthcare professional.

Pregnancy

Women of childbearing age should be advised to use an effective method of birth control to prevent pregnancy while using JUVISYNC. Discuss future pregnancy plans with your patients, and discuss when to stop taking JUVISYNC if they are trying to conceive. Patients should be advised that if they become pregnant they should stop taking JUVISYNC and call their healthcare professional.

Breastfeeding

Women who are breastfeeding should not use JUVISYNC. Patients who have a lipid disorder and are breastfeeding should be advised to discuss the options with their healthcare professional.

Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of Fertility Sitagliptin

A two-year carcinogenicity study was conducted in male and female rats given oral doses of sitagliptin of 50, 150, and 500 mg/kg/day. There was an increased incidence of combined liver adenoma/carcinoma in males and females and of liver carcinoma in females at 500 mg/kg. This dose results in exposures approximately 60 times the human exposure at the maximum recommended daily adult human dose (MRHD) of 100 mg/day based on AUC comparisons. Liver tumors were not observed at 150 mg/kg, approximately 20 times the human exposure at the MRHD. A two-year carcinogenicity study was conducted in male and female mice given oral doses of sitagliptin of 50, 125, 250, and 500 mg/kg/day. There was no increase in the incidence of tumors in any organ up to 500 mg/kg, approximately 70 times human exposure at the MRHD. Sitagliptin was not mutagenic or clastogenic with or without metabolic activation in the Ames bacterial mutagenicity assay, a Chinese hamster ovary (CHO) chromosome aberration assay, an in vitro cytogenetics assay in CHO, an in vitro rat hepatocyte DNA alkaline elution assay, and an in vivo micronucleus assay.

In rat fertility studies with oral gavage doses of 125, 250, and 1000 mg/kg, males were treated for 4 weeks prior to mating, during mating, up to scheduled termination (approximately 8 weeks total) and females were treated 2 weeks prior to mating through gestation day 7. No adverse effect on fertility was observed at 125 mg/kg (approximately 12 times human exposure at the MRHD of 100 mg/day based on AUC comparisons). At higher doses, nondose-related increased resorptions in females were observed (approximately 25 and 100 times human exposure at the MRHD based on AUC comparison).

Simvastatin

In a 72-week carcinogenicity study, mice were administered daily doses of simvastatin of 25, 100, and 400 mg/kg body weight, which resulted in mean plasma drug levels approximately 2, 8, and 16 times higher than the mean human plasma drug level, respectively (as total inhibitory activity based on AUC) after a 40 mg oral dose. Liver carcinomas were significantly increased in high-dose females and mid-and high-dose males with a maximum incidence of 90% in males. The incidence of adenomas of the liver was significantly increased in mid-and high-dose females. Drug treatment also significantly increased the incidence of lung adenomas in mid-and high-dose males and females. Adenomas of the Harderian gland (a gland of the eye of rodents) were significantly higher in high-dose mice than in controls. No evidence of a tumorigenic effect was observed at 25 mg/kg/day.

In a separate 92-week carcinogenicity study in mice at doses up to 25 mg/kg/day, no evidence of a tumorigenic effect was observed (mean plasma drug levels were approximately 2 times higher than humans given 40 mg simvastatin as measured by AUC).

In a two-year study in rats at 25 mg/kg/day, there was a statistically significant increase in the incidence of thyroid follicular adenomas in female rats exposed to approximately 22 times higher levels of simvastatin than in humans given 40 mg simvastatin (as measured by AUC).

A second two-year rat carcinogenicity study with doses of 50 and 100 mg/kg/day produced hepatocellular adenomas and carcinomas (in female rats at both doses and in males at 100 mg/kg/day). Thyroid follicular cell adenomas were increased in males and females at both doses; thyroid follicular cell carcinomas were increased in females at 100 mg/kg/day. The increased incidence of thyroid neoplasms appears to be consistent with findings from other statins. These treatment levels represented plasma drug levels (AUC) of approximately 14 and 30 times (males) and 44 and 50 times (females) the mean human plasma drug exposure after a 40 milligram daily dose.

No evidence of mutagenicity was observed in a microbial mutagenicity (Ames) test with or without rat or mouse liver metabolic activation. In addition, no evidence of damage to genetic material was noted in an in vitro alkaline elution assay using rat hepatocytes, a V-79 mammalian cell forward mutation study, an in vitro chromosome aberration study in CHO cells, or an in vivo chromosomal aberration assay in mouse bone marrow.

There was decreased fertility in male rats treated with simvastatin for 34 weeks at 25 mg/kg body weight (8 times the maximum human exposure level, based on AUC, in patients receiving 40 mg/day); however, this effect was not observed during a subsequent fertility study in which simvastatin was administered at this same dose level to male rats for 11 weeks (the entire cycle of spermatogenesis including epididymal maturation). No microscopic changes were observed in the testes of rats from either study. At 180 mg/kg/day, (which produces exposure levels 44 times higher than those in humans taking 40 mg/day based on surface area, mg/m²), seminiferous tubule degeneration (necrosis and loss of spermatogenic epithelium) was observed. In dogs, there was drug-related testicular atrophy, decreased spermatogenesis, spermatocytic degeneration and giant cell formation at 10 mg/kg/day, (approximately 4 times the human exposure, based on AUC, at 40 mg/day). The clinical significance of these findings is unclear.

Use In Specific Populations Pregnancy

Pregnancy Category X

JUVISYNC

JUVISYNC is contraindicated in women who are or may become pregnant. Lipid-lowering drugs offer no benefit during pregnancy, because cholesterol and cholesterol derivatives are needed for normal fetal development. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy. There are no adequate and well-controlled studies of use of JUVISYNC during pregnancy; however, there are rare reports of congenital anomalies in infants exposed to statins in utero. Animal reproduction studies of simvastatin in rats and rabbits showed no evidence of teratogenicity. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Because statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, JUVISYNC may cause fetal harm when administered to a pregnant woman. If JUVISYNC is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.

Women of childbearing potential, who require treatment with JUVISYNC for a lipid disorder, should be advised to use effective contraception. For women trying to conceive, discontinuation of JUVISYNC should be considered. If pregnancy occurs, JUVISYNC should be immediately discontinued.

Sitagliptin

Reproduction studies have been performed in rats and rabbits. Doses of sitagliptin up to 125 mg/kg (approximately 12 times the human exposure at the maximum recommended human dose) did not impair fertility or harm the fetus. There are, however, no adequate and well-controlled studies in pregnant women.

Sitagliptin administered to pregnant female rats and rabbits from gestation day 6 to 20 (organogenesis) was not teratogenic at oral doses up to 250 mg/kg (rats) and 125 mg/kg (rabbits), or approximately 30-and 20-times human exposure at the maximum recommended human dose (MRHD) of 100 mg/day based on AUC comparisons. Higher doses increased the incidence of rib malformations in offspring at 1000 mg/kg, or approximately 100 times human exposure at the MRHD.

Sitagliptin administered to female rats from gestation day 6 to lactation day 21 decreased body weight in male and female offspring at 1000 mg/kg. No functional or behavioral toxicity was observed in offspring of rats.

Placental transfer of sitagliptin administered to pregnant rats was approximately 45% at 2 hours and 80% at 24 hours postdose. Placental transfer of sitagliptin administered to pregnant rabbits was approximately 66% at 2 hours and 30% at 24 hours.

Simvastatin

Simvastatin was not teratogenic in rats or rabbits at doses (25, 10 mg/kg/day, respectively) that resulted in 6 times the human exposure based on mg/m² surface area. However, in studies with another structurally-related statin, skeletal malformations were observed in rats and mice.

There are rare reports of congenital anomalies following intrauterine exposure to statins. In a review of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or another structurally related statin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed those expected in the general population. However, the study was only able to exclude a 3-to 4-fold increased risk of congenital anomalies over the background rate. In 89% of these cases, drug treatment was initiated prior to pregnancy and was discontinued during the first trimester when pregnancy was identified.

Nursing Mothers JUVISYNC

It is not known whether simvastatin is excreted in human milk. Because a small amount of another drug in the same class as simvastatin is excreted in human milk and because of the potential for serious adverse reactions in nursing infants, women taking JUVISYNC should not nurse their infants. A decision should be made whether to discontinue nursing or discontinue JUVISYNC, taking into account the importance of the drug to the mother.

Sitagliptin

Sitagliptin is secreted in the milk of lactating rats at a milk to plasma ratio of 4:1. It is not known whether sitagliptin is excreted in human milk.

Pediatric Use

Safety and effectiveness of JUVISYNC in pediatric patients under 18 years of age have not been established.

Geriatric Use JUVISYNC

Because advanced age ( ≥ 65 years) is a predisposing factor for myopathy, including rhabdomyolysis, JUVISYNC should be prescribed with caution in the elderly.

Sitagliptin is known to be substantially excreted by the kidney. Because elderly patients are more likely to have decreased renal function, it may be useful to assess renal function in these patients prior to initiating dosing and periodically thereafter.

Sitagliptin

Of the total number of subjects (N=3884) in pre-approval clinical safety and efficacy studies of sitagliptin, 725 patients were 65 years and over, while 61 patients were 75 years and over. No overall differences in safety or effectiveness were observed between subjects 65 years and over and younger subjects. While this and other reported clinical experience have not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.

Simvastatin

Of the 2423 patients who received simvastatin in Phase III clinical studies and the 10,269 patients in the Heart Protection Study who received simvastatin, 363 (15%) and 5366 (52%), respectively were ≥ 65 years old. In HPS, 615 (6%) were ≥ 75 years old. No overall differences in safety or effectiveness were observed between these subjects and younger subjects.

A pharmacokinetic study with simvastatin showed the mean plasma level of statin activity to be approximately 45% higher in elderly patients between 70-78 years of age compared with patients between 18-30 years of age. In 4S, 1021 (23%) of 4444 patients were 65 or older. Lipid-lowering efficacy was at least as great in elderly patients compared with younger patients, and simvastatin significantly reduced total mortality and CHD mortality in elderly patients with a history of CHD. In HPS, 52% of patients were elderly (4891 patients 65-69 years and 5806 patients 70 years or older). The relative risk reductions of CHD death, non-fatal MI, coronary and non-coronary revascularization procedures, and stroke were similar in older and younger patients. In HPS, among 32,145 patients entering the active run-in period, there were 2 cases of myopathy/rhabdomyolysis; these patients were aged 67 and 73. Of the 7 cases of myopathy/rhabdomyolysis among 10,269 patients allocated to simvastatin, 4 were aged 65 or more (at baseline), of whom one was over 75. There were no overall differences in safety between older and younger patients in either 4S or HPS.

Because advanced age ( ≥ 65 years) is a predisposing factor for myopathy, including rhabdomyolysis, simvastatin should be prescribed with caution in the elderly. In a clinical trial of patients treated with simvastatin 80 mg/day, patients ≥ 65 years of age had an increased risk of myopathy, including rhabdomyolysis, compared to patients < 65 years of age.

Renal Impairment

JUVISYNC is not recommended for use in patients with severe renal impairment or ESRD.

Hepatic

Dosage (Posology) and method of administration

Recommended Dosing

The dosages for therapy with JUVISYNC are 100 mg/10 mg, 100 mg/20 mg, 100 mg/40 mg, 50 mg/10 mg, 50 mg/20 mg, and 50 mg/40 mg (sitagliptin/simvastatin) once daily. JUVISYNC should be taken as a single daily dose in the evening. JUVISYNC must not be split or divided before swallowing.

The recommended starting dose is 100 mg/40 mg per day. For patients already taking simvastatin (10, 20, or 40 mg daily) with or without sitagliptin 100 mg daily, JUVISYNC may be initiated at the dose of 100 mg sitagliptin and the dose of simvastatin already being taken.

After initiation or titration of JUVISYNC, lipid levels may be analyzed after 4 or more weeks and dosage adjusted, if needed.

Patients With Renal Impairment

JUVISYNC is not recommended in patients with severe renal impairment or ESRD. JUVISYNC can be used in patients with normal renal function or mild renal impairment (creatinine clearance [CrCl] greater than or equal to 50 mL/min, approximately corresponding to serum creatinine levels of less than or equal to 1.7 mg/dL in men and less than or equal to 1.5 mg/dL in women), without adjustment of the sitagliptin dose. Because simvastatin does not undergo significant renal excretion, modification of the dose of the simvastatin component should not be necessary in patients with mild renal impairment.

For patients with moderate renal impairment (CrCl greater than or equal to 30 to less than 50 mL/min, approximately corresponding to serum creatinine levels of greater than 1.7 to less than or equal to 3.0 mg/dL in men and greater than 1.5 to less than or equal to 2.5 mg/dL in women), the recommended starting dose of JUVISYNC is 50 mg/40 mg once daily. For patients with moderate renal impairment who are already taking simvastatin (10, 20, or 40 mg daily) with or without sitagliptin 50 mg daily, JUVISYNC may be initiated at the dose of 50 mg sitagliptin and the dose of simvastatin already being taken.

Assessment of renal function is recommended prior to initiation of JUVISYNC and periodically thereafter. Creatinine clearance can be estimated from serum creatinine using the Cockcroft-Gault formula. There have been postmarketing reports of worsening renal function in patients with renal impairment treated with sitagliptin, some of whom were prescribed inappropriate doses of sitagliptin.

Concomitant Use With An Insulin Secretagogue (e.g., Sulfonylurea) Or With Insulin

When JUVISYNC is used in combination with an insulin secretagogue (e.g., sulfonylurea) or with insulin, a lower dose of the insulin secretagogue or insulin may be required to reduce the risk of hypoglycemia.

Coadministration With Other Drugs Patients taking Verapamil, Diltiazem, or Dronedarone
  • The dose of simvastatin should not exceed 10 mg per day (100 mg/10 mg or 50 mg/10 mg per day of JUVISYNC).
Patients taking Amiodarone, Amlodipine or Ranolazine
  • The dose of simvastatin should not exceed 20 mg per day (100 mg/20 mg or 50 mg/20 mg per day of JUVISYNC).
Patients With Homozygous Familial Hypercholesterolemia

The recommended dosage is 100 mg/40 mg (for patients with normal or mildly impaired renal function) or 50 mg/40 mg (for patients with moderately impaired renal function) per day in the evening. JUVISYNC should be used as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) in these patients or if such treatments are unavailable.

Simvastatin exposure is approximately doubled with concomitant use of lomitapide; therefore, the dose of simvastatin should be reduced by 50% if initiating lomitapide. For patients with normal or mildly impaired renal function, JUVISYNC dosage should not exceed 100 mg/20 mg daily (or 100 mg/40 mg daily for patients who have previously taken simvastatin 80 mg daily chronically, e.g., for 12 months or more, without evidence of muscle toxicity) while taking lomitapide. For patients with moderately impaired renal function, JUVISYNC dosage should not exceed 50 mg/20 mg daily (or 50 mg/40 mg daily for patients who have previously taken simvastatin 80 mg daily chronically, e.g., for 12 months or more, without evidence of muscle toxicity) while taking lomitapide.

Chinese Patients Taking Lipid-Modifying Doses (greater than or equal to 1 g/day Niacin) Of Niacin-Containing Products

Because of an increased risk for myopathy in Chinese patients taking simvastatin 40 mg coadministered with lipid-modifying doses (greater than or equal to 1 g/day niacin) of niacin-containing products, caution should be used when treating Chinese patients with JUVISYNC 100 mg/40 mg or 50 mg/40 mg per day coadministered with lipid-modifying doses of niacin-containing products. The cause of the increased risk of myopathy is not known. It is also unknown if the risk for myopathy with coadministration of JUVISYNC with lipid-modifying doses of niacin-containing products observed in Chinese patients applies to other Asian patients.

Interaction with other medicinal products and other forms of interaction

Sitagliptin

In Vitro Assessment of Drug Interactions

Sitagliptin is not an inhibitor of CYP isozymes CYP3A4, 2C8, 2C9, 2D6, 1A2, 2C19 or 2B6, and is not an inducer of CYP3A4. Sitagliptin is a p-glycoprotein substrate, but does not inhibit p-glycoprotein mediated transport of digoxin. Based on these results, sitagliptin is considered unlikely to cause interactions with other drugs that utilize these pathways.

Sitagliptin is not extensively bound to plasma proteins. Therefore, the propensity of sitagliptin to be involved in clinically meaningful drug-drug interactions mediated by plasma protein binding displacement is very low.

In Vivo Assessment of Drug Interactions

Effects of Coadministered Sitagliptin and Simvastatin on Other Drugs

Digoxin: There was an increase in the area under the curve (AUC, 26%) and mean peak drug concentration (Cmax, 41%) of digoxin with the coadministration of 100 mg sitagliptin and 80 mg simvastatin for 5 days. Patients receiving digoxin and JUVISYNC should be monitored.

Effects of Sitagliptin on Other Drugs

In clinical studies, as described below, sitagliptin did not meaningfully alter the pharmacokinetics of metformin, glyburide, simvastatin, rosiglitazone, warfarin, or oral contraceptives, providing in vivo evidence of a low propensity for causing drug interactions with substrates of CYP3A4, CYP2C8, CYP2C9, and organic cationic transporter (OCT).

Metformin: Coadministration of multiple twice-daily doses of sitagliptin with metformin, an OCT substrate, did not meaningfully alter the pharmacokinetics of metformin in patients with type 2 diabetes. Therefore, sitagliptin is not an inhibitor of OCT-mediated transport.

Sulfonylureas: Single-dose pharmacokinetics of glyburide, a CYP2C9 substrate, was not meaningfully altered in subjects receiving multiple doses of sitagliptin. Clinically meaningful interactions would not be expected with other sulfonylureas (e.g., glipizide, tolbutamide, and glimepiride) which, like glyburide, are primarily eliminated by CYP2C9.

Thiazolidinediones: Single-dose pharmacokinetics of rosiglitazone was not meaningfully altered in subjects receiving multiple daily doses of sitagliptin, indicating that sitagliptin is not an inhibitor of CYP2C8-mediated metabolism.

Warfarin: Multiple daily doses of sitagliptin did not meaningfully alter the pharmacokinetics, as assessed by measurement of S(-) or R(+) warfarin enantiomers, or pharmacodynamics (as assessed by measurement of prothrombin INR) of a single dose of warfarin. Because S(-) warfarin is primarily metabolized by CYP2C9, these data also support the conclusion that sitagliptin is not a CYP2C9 inhibitor.

Oral Contraceptives: Coadministration with sitagliptin did not meaningfully alter the steady-state pharmacokinetics of norethindrone or ethinyl estradiol.

Effects of Other Drugs on Sitagliptin

Clinical data described below suggest that sitagliptin is not susceptible to clinically meaningful interactions by coadministered medications.

Metformin: Coadministration of multiple twice-daily doses of metformin with sitagliptin did not meaningfully alter the pharmacokinetics of sitagliptin in patients with type 2 diabetes.

Cyclosporine: A study was conducted to assess the effect of cyclosporine, a potent inhibitor of p-glycoprotein, on the pharmacokinetics of sitagliptin. Coadministration of a single 100 mg oral dose of sitagliptin and a single 600 mg oral dose of cyclosporine increased the AUC and Cmax of sitagliptin by approximately 29% and 68%, respectively. These modest changes in sitagliptin pharmacokinetics were not considered to be clinically meaningful. The renal clearance of sitagliptin was also not meaningfully altered. Therefore, meaningful interactions would not be expected with other p-glycoprotein inhibitors.

Effects of Simvastatin on Other Drugs

CYP3A4 Inhibitors: In a study of 12 healthy volunteers, simvastatin at the 80 mg dose had no effect on the metabolism of the probe cytochrome P450 isoform 3A4 (CYP3A4) substrates midazolam and erythromycin. This indicates that simvastatin is not an inhibitor of CYP3A4, and, therefore, is not expected to affect the plasma levels of other drugs metabolized by CYP3A4. Effects of Other Drugs on Simvastatin

Cyclosporine: Although the mechanism is not fully understood, cyclosporine has been shown to increase the AUC of statins. The increase in AUC for simvastatin acid is presumably due, in part, to inhibition of CYP3A4.

CYP3A4 Inhibitors: The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma. Inhibitors of CYP3A4 can raise the plasma levels of HMG-CoA reductase inhibitory activity and increase the risk of myopathy.

Table 6: Effect of Coadministered Drugs or Grapefruit Juice on Simvastatin Systemic Exposure

Coadministered Drug or Grapefruit Juice Dosing of Coadministered Drug or Grapefruit Juice Dosing of Simvastatin Geometric Mean Ratio (Ratio* with / without coadministered drug) No Effect = 1.00
  AUC Cmax
Contraindicated with JUVISYNC
Telithromycin† 200 mg QD for 4 days 80 mg simvastatin acid‡ 12 15
simvastatin 8.9 5.3
Nelfinavir† 1250 mg BID for 14 days 20 mg QD for 28 days simvastatin acid‡
simvastatin 6 6.2
Itraconazole† 200 mg QD for 4 days 80 mg simvastatin acid‡ 13.1
simvastatin 13.1
Posaconazole 100 mg (oral suspension) QD for 13 days 200 mg (oral suspension) QD for 13 days 40 mg simvastatin acid 7.3 9.2
simvastatin 10.3 9.4
40 mg simvastatin acid 8.5 9.5
simvastatin 10.6 11.4
Gemfibrozil 600 mg BID for 3 days 40 mg simvastatin acid 2.85 2.18
simvastatin 1.35 0.91
Avoid grapefruit juice
Grapefruit Juice§ (high dose) 200 mL of double-strength TID¶ 60 mg single dose simvastatin acid 7
simvastatin 16
Grapefruit Juice§ (low dose) 8 oz (about 237 mL) of single-strength# 20 mg single dose simvastatin acid 1.3
simvastatin 1.9
Avoid taking with > 10 mg simvastatin (100 mg/10 mg or 50 mg/10 mg JUVISYNC), based on clinical and/or postmarketing experience
Verapamil SR 240 mg QD Days 1-7 then 240 mg BID on Days 8-10 80 mg on Day 10 simvastatin acid 2.3 2.4
simvastatin 2.5 2.1
Diltiazem 120 mg BID for 10 days 80 mg on Day 10 simvastatin acid 2.69 2.69
simvastatin 3.10 2.88
Diltiazem 120 mg BID for 14 days 20 mg on Day 14 simvastatin 4.6 3.6
Dronedarone 400 mg BID for 14 days 40 mg QD for 14 days simvastatin acid 1.96 2.14
simvastatin 3.90 3.75
Avoid taking with > 20 mg simvastatin (100 mg/20 mg or 50 mg/20 mg JUVISYNC), based on clinical and/or postmarketing experience
Amlodipine 10 mg QD for 10 days 80 mg on Day 10 simvastatin acid 1.58 1.56
simvastatin 1.77 1.47
Ranolazine SR 1000 mg BID for 7 days 80 mg on Day 1 and Days 6-9 simvastatin acid 2.26 2.28
simvastatin 1.86 1.75
Amiodarone 400 mg QD for 3 days 40 mg on Day 3 simvastatin acid 1.75 1.72
simvastatin 1.76 1.79
Avoid taking with >20 mg simvastatin (or 40 mg for patients who have previously taken 80 mg simvastatin chronically, e.g., for 12 months or more, without evidence of muscle toxicity), based on clinical experience
Lomitapide 60 mg QD for 7 days 40 mg single dose simvastatin acid 1.7 1.6
simvastatin 2 2
Lomitapide 10 mg QD for 7 days 20 mg single dose simvastatin acid 1.4 1.4
simvastatin 1.6 1.7
No dosing adjustmments required for the following:
Fenofibrate 160 mg QD for 14 days 80 mg QD on Days 8-14 simvastatin acid 0.64 0.89
simvastatin 0.89 0.83
Niacin extended-release Þ 2 g single dose 20 mg single dose simvastatin acid 1.6 1.84
simvastatin 1.4 1.08
Propranolol 80 mg single dose 80 mg single dose total inhibitor 0.79 ↓from 33.6 to 21.1 ng•eq/mL
active inhibitor 0.79 ↓from 7.0 to 4.7 ng•eq/mL
* Results based on a chemical assay except results with propranolol as indicated.
† Results could be representative of the following CYP3A4 inhibitors: ketoconazole, erythromycin, clarithromycin, HIV protease inhibitors, and nefazodone.
‡ Simvastatin acid refers to the β-hydroxyacid of simvastatin.
§ The effect of amounts of grapefruit juice between those used in these two studies on simvastatin pharmacokinetics has not been studied.
¶ Double-strength: one can of frozen concentrate diluted with one can of water. Grapefruit juice was administered TID for 2 days, and 200 mL together with single dose simvastatin and 30 and 90 minutes following single dose simvastatin on Day 3.
# Single-strength: one can of frozen concentrate diluted with 3 cans of water. Grapefruit juice was administered with breakfast for 3 days, and simvastatin was administered in the evening on Day 3.
Þ Chinese patients have an increased risk for myopathy with simvastatin coadministered with lipid-modifying doses ( ≥ 1 gram/day niacin) of niacin-containing products, and the risk is dose-related.