In pre-marketing trials involving over 3210 patients, accidental or intentional overdose of Iloperidone was documented in 8 patients ranging from 48 mg to 576 mg taken at once and 292 mg taken over a 3-day period. No fatalities were reported from these cases. The largest confirmed single ingestion of Iloperidone was 576 mg; no adverse physical effects were noted for this patient. The next largest confirmed ingestion of Iloperidone was 438 mg over a 4-day period; extrapyramidal symptoms and a QTc interval of 507 msec were reported for this patient with no cardiac sequelae. This patient resumed Iloperidone treatment for an additional 11 months. In general, reported signs and symptoms were those resulting from an exaggeration of the known pharmacological effects (e.g., drowsiness and sedation, tachycardia and hypotension) of Iloperidone.
Management Of OverdoseThere is no specific antidote for Iloperidone. Therefore appropriate supportive measures should be instituted. In case of acute overdose, the physician should establish and maintain an airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. The possibility of obtundation, seizures or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis. Cardiovascular monitoring should commence immediately and should include continuous ECG monitoring to detect possible arrhythmias. If antiarrhythmic therapy is administered, disopyramide, procainamide and quinidine should not be used, as they have the potential for QT-prolonging effects that might be additive to those of Iloperidone. Similarly, it is reasonable to expect that the alpha-blocking properties of bretylium might be additive to those of Iloperidone, resulting in problematic hypotension. Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids or sympathomimetic agents (epinephrine and dopamine should not be used, since beta stimulation may worsen hypotension in the setting of Iloperidone-induced alpha blockade). In cases of severe extrapyramidal symptoms, anticholinergic medication should be administered. Close medical supervision should continue until the patient recovers.
Iloperidone is contraindicated in individuals with a known hypersensitivity reaction to the product. Anaphylaxis, angioedema, and other hypersensitivity reactions have been reported.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trial of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. The information below is derived from a clinical trial database for Iloperidone consisting of 3229 patients exposed to Iloperidone at doses of 10 mg/day or greater, for the treatment of schizophrenia. Of these, 999 received Iloperidone for at least 6 months, with 657 exposed to Iloperidone for at least 12 months. All of these patients who received Iloperidone were participating in multiple-dose clinical trials. The conditions and duration of treatment with Iloperidone varied greatly and included (in overlapping categories), open-label and double-blind phases of studies, inpatients and outpatients, fixed-dose and flexible-dose studies, and short-term and longer-term exposure.
The information presented in these sections was derived from pooled data from 4 placebo-controlled, 4- or 6week, fixed- or flexible-dose studies in patients who received Iloperidone at daily doses within a range of 10 to 24 mg (n=874).
Adverse Reactions Occurring At An Incidence Of 2% Or More Among Iloperidone-Treated Patients And More Frequent Than PlaceboTable 7 enumerates the pooled incidences of adverse reactions that were spontaneously reported in four placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies, listing those reactions that occurred in 2% or more of patients treated with Iloperidone in any of the dose groups, and for which the incidence in Iloperidone-treated patients in any dose group was greater than the incidence in patients treated with placebo.
Table 7: Percentage of Adverse Reactions in Short-Term, Fixed- or Flexible-Dose, Placebo-Controlled Trials in Adult Patients*
Body System or Organ Class Dictionary-derived Term | Placebo % (N=587) | Iloperidone 10-16 mg/day % (N=483) | Iloperidone 20-24 mg/day % (N=391) |
Body as a Whole | |||
Arthralgia | 2 | 3 | 3 |
Fatigue | 3 | 4 | 6 |
Musculoskeletal Stiffness | 1 | 1 | 3 |
Weight Increased | 1 | 1 | 9 |
Cardiac Disorders | |||
Tachycardia | 1 | 3 | 12 |
Eye Disorders | |||
Vision Blurred | 2 | 3 | 1 |
Gastrointestinal Disorders | |||
Nausea | 8 | 7 | 10 |
Dry Mouth | 1 | 8 | 10 |
Diarrhea | 4 | 5 | 7 |
Abdominal Discomfort | 1 | 1 | 3 |
Infections | |||
Nasopharyngitis | 3 | 4 | 3 |
Upper Respiratory Tract Infection | 1 | 2 | 3 |
Nervous System Disorders | |||
Dizziness | 7 | 10 | 20 |
Somnolence | 5 | 9 | 15 |
Extrapyramidal Disorder | 4 | 5 | 4 |
Tremor | 2 | 3 | 3 |
Lethargy | 1 | 3 | 1 |
Reproductive System | |||
Ejaculation Failure | < 1 | 2 | 2 |
Respiratory | |||
Nasal Congestion | 2 | 5 | 8 |
Dyspnea | < 1 | 2 | 2 |
Skin | |||
Rash | 2 | 3 | 2 |
Vascular Disorders | |||
Orthostatic Hypotension | 1 | 3 | 5 |
Hypotension | < 1 | < 1 | 3 |
* Table includes adverse reactions that were reported in 2% or more of patients in any of the Iloperidone dose groups and which occurred at greater incidence than in the placebo group. Figures rounded to the nearest integer. |
Based on the pooled data from 4 placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies, adverse reactions that occurred with a greater than 2% incidence in the patients treated with Iloperidone, and for which the incidence in patients treated with Iloperidone 20-24 mg/day were twice than the incidence in patients treated with Iloperidone 10-16 mg/day were: abdominal discomfort, dizziness, hypotension, musculoskeletal stiffness, tachycardia, and weight increased.
Common And Drug-Related Adverse Reactions In Clinical TrialsBased on the pooled data from 4 placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies, the following adverse reactions occurred in ≥ 5% incidence in the patients treated with Iloperidone and at least twice the placebo rate for at least 1 dose: dizziness, dry mouth, fatigue, nasal congestion, somnolence, tachycardia, orthostatic hypotension, and weight increased. Dizziness, tachycardia, and weight increased were at least twice as common on 20-24 mg/day as on 10-16 mg/day.
Extrapyramidal Symptoms (EPS) In Clinical TrialsPooled data from the 4 placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies provided information regarding EPS. Adverse event data collected from those trials showed the following rates of EPS-related adverse events as shown in Table 8.
Table 8: Percentage of EPS Compared to Placebo
Adverse Event Term | Placebo (%) (N=587) | Iloperidone 10-16 mg/day (%) (N=483) | Iloperidone 20-24 mg/day (%) (N=391) |
All EPS events | 11.6 | 13.5 | 15.1 |
Akathisia | 2.7 | 1.7 | 2.3 |
Bradykinesia | 0 | 0.6 | 0.5 |
Dyskinesia | 1.5 | 1.7 | 1.0 |
Dystonia | 0.7 | 1.0 | 0.8 |
Parkinsonism | 0 | 0.2 | 0.3 |
Tremor | 1.9 | 2.5 | 3.1 |
Based on the pooled data from 4 placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies, there was no difference in the incidence of discontinuation due to adverse events between Iloperidone-treated (5%) and placebo-treated (5%) patients. The types of adverse events that led to discontinuation were similar for the Iloperidone- and placebo-treated patients.
Demographic Differences In Adverse Reactions In Clinical TrialsAn examination of population subgroups in the 4 placebo-controlled, 4- or 6-week, fixed- or flexible-dose studies did not reveal any evidence of differences in safety on the basis of age, gender or race.
Laboratory Test Abnormalities In Clinical TrialsThere were no differences between Iloperidone and placebo in the incidence of discontinuation due to changes in hematology, urinalysis, or serum chemistry.
In short-term placebo-controlled trials (4- to 6-weeks), there were 1.0% (13/1342) iloperidone-treated patients with hematocrit at least one time below the extended normal range during post-randomization treatment, compared to 0.3% (2/585) on placebo. The extended normal range for lowered hematocrit was defined in each of these trials as the value 15% below the normal range for the centralized laboratory that was used in the trial.
Other Reactions During The Pre-marketing Evaluation Of IloperidoneThe following is a list of MedDRA terms that reflect adverse reactions in patients treated with Iloperidone at multiple doses ≥ 4 mg/day during any phase of a trial with the database of 3210 Iloperidone-treated patients. All reported reactions are included except those already listed in Table 7, or other parts of the Adverse Reactions  (6), those considered in the Warnings and Precautions (5), those reaction terms which were so general as to be uninformative, reactions reported in fewer than 3 patients and which were neither serious nor life-threatening, reactions that are otherwise common as background reactions, and reactions considered unlikely to be drug related.
Reactions are further categorized by MedDRA system organ class and listed in order of decreasing frequency according to the following definitions: frequent adverse events are those occurring in at least 1/100 patients (only those not listed in Table 7 appear in this listing); infrequent adverse reactions are those occurring in 1/100 to 1/1000 patients; rare events are those occurring in fewer than 1/1000 patients.
Blood and Lymphatic Disorders: Infrequent - anemia, iron deficiency anemia; Rare - leukopenia
Cardiac Disorders: Frequent - palpitations; Rare - arrhythmia, atrioventricular block first degree, cardiac failure (including congestive and acute)
Ear and Labyrinth Disorders: Infrequent - vertigo, tinnitus
Endocrine Disorders: Infrequent - hypothyroidism
Eye Disorders: Frequent - conjunctivitis (including allergic); Infrequent - dry eye, blepharitis, eyelid edema, eye swelling, lenticular opacities, cataract, hyperemia (including conjunctival)
Gastrointestinal Disorders: Infrequent - gastritis, salivary hypersecretion, fecal incontinence, mouth ulceration; Rare - aphthous stomatitis, duodenal ulcer, hiatus hernia, hyperchlorhydria, lip ulceration, reflux esophagitis, stomatitis
General Disorders and Administrative Site Conditions: Infrequent - edema (general, pitting, due to cardiac disease), difficulty in walking, thirst; Rare - hyperthermia
Hepatobiliary Disorders: Infrequent - cholelithiasis
Investigations: Frequent: weight decreased; Infrequent - hemoglobin decreased, neutrophil count increased, hematocrit decreased
Metabolism and Nutrition Disorders: Infrequent - increased appetite, dehydration, hypokalemia, fluid retention
Musculoskeletal and Connective Tissue Disorders: Frequent - myalgia, muscle spasms; Rare - torticollis
Nervous System Disorders: Infrequent - paresthesia, psychomotor hyperactivity, restlessness, amnesia, nystagmus; Rare - restless legs syndrome
Psychiatric Disorders: Frequent - restlessness, aggression, delusion; Infrequent - hostility, libido decreased, paranoia, anorgasmia, confusional state, mania, catatonia, mood swings, panic attack, obsessive-compulsive disorder, bulimia nervosa, delirium, polydipsia psychogenic, impulse-control disorder, major depression
Renal and Urinary Disorders: Frequent - urinary incontinence; Infrequent - dysuria, pollakiuria, enuresis, nephrolithiasis; Rare - urinary retention, renal failure acute
Reproductive System and Breast Disorders: Frequent - erectile dysfunction; Infrequent - testicular pain, amenorrhea, breast pain; Rare - menstruation irregular, gynecomastia, menorrhagia, metrorrhagia, postmenopausal hemorrhage, prostatitis.
Respiratory, Thoracic and Mediastinal Disorders: Infrequent - epistaxis, asthma, rhinorrhea, sinus congestion, nasal dryness; Rare - dry throat, sleep apnea syndrome, dyspnea exertional
Postmarketing ExperienceThe following adverse reactions have been identified during post-approval use of Iloperidone: retrograde ejaculation and hypersensitivity reactions (including anaphylaxis; angioedema; throat tightness; oropharyngeal swelling; swelling of the face, lips, mouth, and tongue; urticaria; rash; and pruritus). Because these reactions were reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Iloperidone® is indicated for the treatment of schizophrenia in adults.
When deciding among the alternative treatments available for this condition, the prescriber should consider the finding that Iloperidone is associated with prolongation of the QTc interval. Prolongation of the QTc interval is associated in some other drugs with the ability to cause torsade de pointestype arrhythmia, a potentially fatal polymorphic ventricular tachycardia which can result in sudden death. In many cases this would lead to the conclusion that other drugs should be tried first. Whether Iloperidone will cause torsade de pointes or increase the rate of sudden death is not yet known.
Patients must be titrated to an effective dose of Iloperidone. Thus, control of symptoms may be delayed during the first 1 to 2 weeks of treatment compared to some other antipsychotic drugs that do not require a similar titration. Prescribers should be mindful of this delay when selecting an antipsychotic drug for the treatment of schizophrenia.
Iloperidone acts as an antagonist with high (nM) affinity binding to serotonin 5-HT2A dopamine D2 and D3 receptors, and norepinephrine NE∞1 receptors (Ki values of 5.6, 6.3, 7.1, and 0.36 nM, respectively). Iloperidone has moderate affinity for dopamine D4, and serotonin 5-HT6 and 5-HT7 receptors (Ki values of 25, 43, and 22, nM respectively), and low affinity for the serotonin 5-HT1A, dopamine D1, and histamine H1 receptors (Ki values of 168, 216 and 437 nM, respectively). Iloperidone has no appreciable affinity (Ki>1000 nM) for cholinergic muscarinic receptors. The affinit y of iloperidone metabolite P88 is generally equal to or less than that of the parent compound, while the metabolite P95 only shows affinity for 5-HT2A (Ki value of 3.91) and the NE∞1A, NE∞1B, NE∞1D, and NE∞2C receptors (Ki values of 4.7, 2.7, 8.8 and 4.7 nM respectively).
The observed mean elimination half-lives for iloperidone, P88 and P95 in CYP2D6 extensive metabolizers (EM) are 18, 26, and 23 hours, respectively, and in poor metabolizers (PM) are 33, 37 and 31 hours, respectively. Steady-state concentrations are attained within 3 -4 days of dosing. Iloperidone accumulation is predictable from single-dose pharmacokinetics. The pharmacokinetics of iloperidone is more than dose proportional. Elimination of iloperidone is mainly through hepatic metabolism involving 2 P450 isozymes, CYP2D6 and CYP3A4.
Absorption: Iloperidone is well absorbed after administration of the tablet with peak plasma concentrations occurring within 2 to 4 hours; while the relative bioavailability of the tablet formulation compared to oral solution is 96%. Administration of iloperidone with a standard high-fat meal did not significantly affect the Cmax or AUC of iloperidone, P88, or P95, but delayed Tmax by 1 hour for iloperidone, 2 hours for P88 and 6 hours for P95. Iloperidone can be administered without regard to meals.
Distribution: Iloperidone has an apparent clearance (clearance / bioavailability) of 47 to 102 L/h, with an apparent volume of distribution of 1340-2800 L. At therapeutic concentrations, the unbound fraction of iloperidone in plasma is ˜3% and of each metabolite (P88 and P95) it is ˜8%.
Metabolism and Elimination: Iloperidone is metabolized primarily by 3 biotransformation pathways: carbonyl reduction, hydroxylation (mediated by CYP2D6) and O-demethylation (mediated by CYP3A4). There are 2 predominant iloperidone metabolites, P95 and P88. The iloperidone metabolite P95 represents 47.9% of the AUC of iloperidone and its metabolites in plasma at steady-state for extensive metabolizers (EM) and 25% for poor metabolizers (PM). The active metabolite P88 accounts for 19.5% and 34.0% of total plasma exposure in EM and PM, respectively.
Approximately 7% -10% of Caucasians and 3% -8% of black/African Americans lack the capacity to metabolize CYP2D6 substrates and are classified as poor metabolizers (PM), whereas the rest are intermediate, extensive or ultrarapid metabolizers. Coadministration of Iloperidone with known strong inhibitors of CYP2D6 like fluoxetine results in a 2.3-fold increase in iloperidone plasma exposure, and therefore one-half of the Iloperidone dose should be administered.
Similarly, PMs of CYP2D6 have higher exposure to iloperidone compared with EMs and PMs should have their dose reduced by one-half. Laboratory tests are available to identify CYP2D6 PMs.
The bulk of the radioactive materials were recovered in the urine (mean 58.2% and 45.1% in EM and PM, respectively), with feces accounting for 19.9% (EM) to 22.1% (PM) of the dosed radioactivity.
Transporter Interaction: Iloperidone and P88 are not substrates of P-gp and iloperidone is a weak P-gp inhibitor.
Included as part of the PRECAUTIONS section.
PRECAUTIONS Increased Mortality In Elderly Patients With Dementia-Related PsychosisAntipsychotic drugs increase the all-cause risk of death in elderly patients with dementia-related psychosis. Analyses of 17 dementia-related psychosis placebo-controlled trials (modal duration of 10 weeks and largely in patients taking atypical antipsychotic drugs) revealed a risk of death in the drug-treated patients of between 1.6 to 1.7 times that in placebo-treated patients. Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in placebo-treated patients.
Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. Iloperidone is not approved for the treatment of patients with dementia-related psychosis.
Cerebrovascular Adverse Reactions, Including Stroke, In Elderly Patients With Dementia-Related PsychosisIn placebo-controlled trials in elderly subjects with dementia, patients randomized to risperidone, aripiprazole, and olanzapine had a higher incidence of stroke and transient ischemic attack, including fatal stroke. Iloperidone is not approved for the treatment of patients with dementia-related psychosis.
QT ProlongationIn an open-label QTc study in patients with schizophrenia or schizoaffective disorder (n=160), Iloperidone was associated with QTc prolongation of 9 msec at an iloperidone dose of 12 mg twice daily. The effect of Iloperidone on the QT interval was augmented by the presence of CYP450 2D6 or 3A4 metabolic inhibition (paroxetine 20 mg once daily and ketoconazole 200 mg twice daily, respectively). Under conditions of metabolic inhibition for both 2D6 and 3A4, Iloperidone 12 mg twice daily was associated with a mean QTcF increase from baseline of about 19 msec.
No cases of torsade de pointes or other severe cardiac arrhythmias were observed during the pre-marketing clinical program.
The use of Iloperidone should be avoided in combination with other drugs that are known to prolong QTc including Class 1A (e.g., quinidine, procainamide) or Class III (e.g., amiodarone, sotalol) antiarrhythmic medications, antipsychotic medications (e.g., chlorpromazine, thioridazine), antibiotics (e.g., gatifloxacin, moxifloxacin), or any other class of medications known to prolong the QTc interval (e.g., pentamidine, levomethadyl acetate, methadone). Iloperidone should also be avoided in patients with a known genetic susceptibility to congenital long QT syndrome and in patients with a history of cardiac arrhythmias.
Certain circumstances may increase the risk of torsade de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including (1) bradycardia; (2) hypokalemia or hypomagnesemia; (3) concomitant use of other drugs that prolong the QTc interval; and (4) presence of congenital prolongation of the QT interval; (5) recent acute myocardial infarction; and/or (6) uncompensated heart failure.
Caution is warranted when prescribing Iloperidone with drugs that inhibit Iloperidone metabolism , and in patients with reduced activity of CYP2D6.
is recommended that patients being considered for Iloperidone treatment who are at risk for significant electrolyte disturbances have baseline serum potassium and magnesium measurements with periodic monitoring. Hypokalemia (and/or hypomagnesemia) may increase the risk of QT prolongation and arrhythmia. Iloperidone should be avoided in patients with histories of significant cardiovascular illness, e.g., QT prolongation, recent acute myocardial infarction, uncompensated heart failure, or cardiac arrhythmia. Iloperidone should be discontinued in patients who are found to have persistent QTc measurements > 500 msec.
If patients taking Iloperidone experience symptoms that could indicate the occurrence of cardiac arrhythmias, e.g., dizziness, palpitations, or syncope, the prescriber should initiate further evaluation, including cardiac monitoring.
Neuroleptic Malignant Syndrome (NMS)A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs, including Iloperidone. Clinical manifestations include hyperpyrexia, muscle rigidity, altered mental status (including catatonic signs) and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.
The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases in which the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system (CNS) pathology.
The management of this syndrome should include: (1) immediate discontinuation of the antipsychotic drugs and other drugs not essential to concurrent therapy, (2) intensive symptomatic treatment and medical monitoring, and (3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS.
If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported.
Tardive DyskinesiaTardive dyskinesia is a syndrome consisting of potentially irreversible, involuntary, dyskinetic movements, which may develop in patients treated with antipsychotic drugs. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely on prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown.
The risk of developing tardive dyskinesia and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic administered increases. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses.
There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.
Given these considerations, Iloperidone should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that (1) is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically.
If signs and symptoms of tardive dyskinesia appear in a patient on Iloperidone, drug discontinuation should be considered. However, some patients may require treatment with Iloperidone despite the presence of the syndrome.
Metabolic ChangesAtypical antipsychotic drugs have been associated with metabolic changes that may increase cardiovascular/cerebrovascular risk. These metabolic changes include hyperglycemia, dyslipidemia, and body weight gain. While all atypical antipsychotic drugs have been shown to produce some metabolic changes, each drug in the class has its own specific risk profile.
Hyperglycemia And Diabetes MellitusHyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics including Iloperidone. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycemia-related adverse events is not completely understood. However, epidemiological studies suggest an increased risk of hyperglycemia-related adverse events in patients treated with the atypical antipsychotics included in these studies.
Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of antidiabetic treatment despite discontinuation of the suspect drug.
Data from a 4- week, fixed-dose study in adult subjects with schizophrenia, in which fasting blood samples were drawn, are presented in Table 1.
Table 1: Change in Fasting Glucose
Placebo | Iloperidone-24 mg/day | |
Mean Change from Baseline (mg/dL) | ||
n=114 | n=228 | |
Serum Glucose Change from Baseline | -0.5 | 6.6 |
Proportion of Patients with Shifts | ||
Serum Glucose Normal to High ( < 100 mg/dL to ≥ 126 mg/dL) | 2.5 % (2/80) | 10.7 % (18/169) |
Pooled analyses of glucose data from clinical studies including longer term trials are shown in Table 2.
Table 2: Change in Glucose
Mean Change from Baseline (mg/dL) | |||
3-6 months | 6-12 months | > 12 months | |
Iloperidone 10-16 mg/day | 1.8 (N=773) | 5.4 (N=723) | 5.4 (N=425) |
Iloperidone 20-24 mg/day | -3.6 (N=34) | -9.0 (N=31) | -18.0 (N=20) |
Undesirable alterations in lipids have been observed in patients treated with atypical antipsychotics.
Data from a placebo-controlled, 4-week, fixed-dose study, in which fasting blood samples were drawn, in adult subjects with schizophrenia are presented in Table 3.
Table 3: Change in Fasting Lipids
Placebo | Iloperidone-24 mg/day | |
Mean Change from Baseline(mg/dL) | ||
Cholesterol | n= 114 | n=228 |
Change from baseline | -2.17 | 8.18 |
LDL | n=109 | n=217 |
Change from baseline | -1.41 | 9.03 |
HDL | n= 114 | n=228 |
Change from baseline | -3.35 | 0.55 |
Triglycerides | n= 114 | n=228 |
Change from baseline | 16.47 | -0.83 |
Proportion of Patients with Shifts | ||
Cholesterol | ||
Normal to High ( < 200 mg/dL to ≥ 240 mg/dL) | 1.4 % (1/72) | 3.6% (5/141) |
LDL | ||
Normal to High ( < 100 mg/dL to ≥ 160 mg/dL) | 2.4% (1/42) | 1.1% (1/90) |
HDL | ||
Normal to Low ( ≥ 40 mg/dL to < 40 mg/dL) | 23.8%(19/80) | 12.1%(20/166) |
Triglycerides | ||
Normal to High ( < 150 mg/dL to ≥ 200 mg/dL) | 8.3%(6/72) | 10.1%(15/148) |
Pooled analyses of cholesterol and triglyceride data from clinical studies including longer term trials are shown in Table 4 and Table 5.
Table 4: Change in Cholesterol
Mean Change from Baseline (mg/dL) | |||
3-6 months | 6-12 months | > 12 months | |
Iloperidone 10-16 mg/day | -3.9 (N=783) | -3.9 (N=726) | -7.7 (N=428) |
Iloperidone 20-24 mg/day | -19.4 (N=34) | -23.2 (N=31) | -19.4 (N=20) |
Table 5: Change in Triglycerides
Mean Change from Baseline (mg/dL) | |||
3-6 months | 6-12 months | > 12 months | |
Iloperidone 10-16 mg/day | -8.9 (N=783) | -8.9 (N=726) | -17.7 (N=428) |
Iloperidone 20-24 mg/day | -26.6 (N=34) | -35.4 (N=31) | -17.7 (N=20) |
Weight gain has been observed with atypical antipsychotic use. Clinical monitoring of weight is recommended.
Across all short- and long-term studies, the overall mean change from baseline at endpoint was 2.1 kg.
Changes in body weight (kg) and the proportion of subjects with ≥ 7% gain in body weight from 4 placebo-controlled, 4 or 6-week, fixed- or flexible-dose studies in adult subjects are presented in Table 6.
Table 6: Change in Body Weight
Placebo n=576 | Iloperidone 10-16 mg/day n=481 | Iloperidone 20-24 mg/day n=391 | |
Weight (kg) Change from Baseline | -0.1 | 2.0 | 2.7 |
Weight Gain ≥ 7% increase from Baseline | 4% | 12% | 18% |
In short-term placebo-controlled trials (4- to 6-weeks), seizures occurred in 0.1% (1/1344) of patients treated with Iloperidone compared to 0.3% (2/587) on placebo. As with other antipsychotics, Iloperidone should be used cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold. Conditions that lower the seizure threshold may be more prevalent in a population of 65 years or older.
Orthostatic Hypotension And SyncopeIloperidone can induce orthostatic hypotension associated with dizziness, tachycardia, and syncope. This reflects its alpha1-adrenergic antagonist properties. In double-blind placebo-controlled short-term studies, where the dose was increased slowly, as recommended above, syncope was reported in 0.4% (5/1344) of patients treated with Iloperidone, compared with 0.2% (1/587) on placebo. Orthostatic hypotension was reported in 5% of patients given 20-24 mg/day, 3% of patients given 10-16 mg/day, and 1% of patients given placebo. More rapid titration would be expected to increase the rate of orthostatic hypotension and syncope.
Iloperidone should be used with caution in patients with known cardiovascular disease (e.g., heart failure, history of myocardial infarction, ischemia, or conduction abnormalities), cerebrovascular disease, or conditions that predispose the patient to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medications). Monitoring of orthostatic vital signs should be considered in patients who are vulnerable to hypotension.
FallsIloperidone may cause somnolence, postural hypotension, motor and sensory instability, which may lead to falls and, consequently, fractures or other injuries. For patients with diseases, conditions, or medications that could exacerbate these effects, complete fall risk assessments when initiating antipsychotic treatment and recurrently for patients on long-term antipsychotic therapy.
Leukopenia, Neutropenia And AgranulocytosisIn clinical trial and postmarketing experience, events of leukopenia/neutropenia have been reported temporally related to antipsychotic agents. Agranulocytosis (including fatal cases) has also been reported.
Possible risk factors for leukopenia/neutropenia include preexisting low white blood cell count (WBC) and history of drug induced leukopenia/neutropenia. Patients with a pre-existing low WBC or a history of drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and should discontinue Iloperidone at the first sign of a decline in WBC in the absence of other causative factors.
Patients with neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count < 1000/mm³) should discontinue Iloperidone and have their WBC followed until recovery.
HyperprolactinemiaAs with other drugs that antagonize dopamine D2 receptors, Iloperidone elevates prolactin levels.
Hyperprolactinemia may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotropin secretion. This, in turn, may inhibit reproductive function by impairing gonadalsteroidogenesis in both female and male patients. Galactorrhea, amenorrhea, gynecomastia, and impotence have been reported with prolactin-elevating compounds. Long-standing hyperprolactinemia when associated with hypogonadism may lead to decreased bone density in both female and male patients.
Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin-dependent in vitro, a factor of potential importance if the prescription of these drugs is contemplated in a patient with previously detected breast cancer. Mammary gland proliferative changes and increases in serum prolactin were seen in mice and rats treated with Iloperidone. Neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is considered too limited to be conclusive at this time.
In a short-term placebo-controlled trial (4-weeks), the mean change from baseline to endpoint in plasma prolactin levels for the Iloperidone 24 mg/day-treated group was an increase of 2.6 ng/mL compared to a decrease of 6.3 ng/mL in the placebo-group. In this trial, elevated plasma prolactin levels were observed in 26% of adults treated with Iloperidone compared to 12% in the placebo group. In the short-term trials, Iloperidone was associated with modest levels of prolactin elevation compared to greater prolactin elevations observed with some other antipsychotic agents. In pooled analysis from clinical studies including longer term trials, in 3210 adults treated with iloperidone, gynecomastia was reported in 2 male subjects (0.1%) compared to 0% in placebo-treated patients, and galactorrhea was reported in 8 female subjects (0.2%) compared to 3 female subjects (0.5%) in placebo-treated patients.
Body Temperature RegulationDisruption of the body's ability to reduce core body temperature has been attributed to antipsychotic agents. Appropriate care is advised when prescribing Iloperidone for patients who will be experiencing conditions which may contribute to an elevation in core body temperature, e.g., exercising strenuously, exposure to extreme heat, receiving concomitant medication with anticholinergic activity, or being subject to dehydration.
DysphagiaEsophageal dysmotility and aspiration have been associated with antipsychotic drug use. Aspiration pneumonia is a common cause of morbidity and mortality in elderly patients. Iloperidone and other antipsychotic drugs should be used cautiously in patients at risk for aspiration pneumonia.
SuicideThe possibility of a suicide attempt is inherent in psychotic illness, and close supervision of high-risk patients should accompany drug therapy. Prescriptions for Iloperidone should be written for the smallest quantity of tablets consistent with good patient management in order to reduce the risk of overdose.
PriapismThree cases of priapism were reported in the pre-marketing Iloperidone program. Drugs with alpha-adrenergic blocking effects have been reported to induce priapism. Iloperidone shares this pharmacologic activity. Severe priapism may require surgical intervention.
Potential For Cognitive And Motor ImpairmentIloperidone, like other antipsychotics, has the potential to impair judgment, thinking or motor skills. In short-term, placebo-controlled trials, somnolence (including sedation) was reported in 11.9% (104/874) of adult patients treated with Iloperidone at doses of 10 mg/day or greater versus 5.3% (31/587) treated with placebo. Patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that therapy with Iloperidone does not affect them adversely.
Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of FertilityCarcinogenesis: Lifetime carcinogenicity studies were conducted in CD-1 mice and Sprague Dawley rats. Iloperidone was administered orally at doses of 2.5, 5.0 and 10 mg/kg/day to CD-1 mice and 4, 8, and 16 mg/kg/day to Sprague Dawley rats (0.5, 1.0 and 2.0 times and 1.6, 3.2 and 6.5 times, respectively, the MRHD of 24 mg/day on a mg/m² basis). There was an increased incidence of malignant mammary gland tumors in female mice treated with the lowest dose (2.5 mg/kg/day) only. There were no treatment-related increases in neoplasia in rats.
The carcinogenic potential of the iloperidone metabolite P95, which is a major circulating metabolite of iloperidone in humans but is not present at significant amounts in mice or rats, was assessed in a lifetime carcinogenicity study in Wistar rats at oral doses of 25, 75 and 200 mg/kg/day in males and 50, 150, and 250 (reduced from 400) mg/kg/day in females. Drug-related neoplastic changes occurred in males, in the pituitary gland (pars distalis adenoma) at all doses and in the pancreas (islet cell adenoma) at the high dose. Plasma levels of P95 (AUC) in males at the tested doses (25, 75, and 200 mg/kg/day) were approximately 0.4, 3, and 23 times, respectively, the human exposure to P95 at the MRHD of iloperidone.
MutagenesisIloperidone was negative in the Ames test and in the in vivo mouse bone marrow and rat liver micronucleus tests. Iloperidone induced chromosomal aberrations in Chinese Hamster Ovary (CHO) cells in vitro at concentrations which also caused some cytotoxicity.
The iloperidone metabolite P95 was negative in the Ames test, the V79 chromosome aberration test, and an in vivo mouse bone marrow micronucleus test.
Impairment Of FertilityIloperidone decreased fertility at 12 and 36 mg/kg in a study in which both male and female rats were treated. The no-effect dose was 4 mg/kg, which is 1.6 times the MRHD of 24 mg/day on a mg/m² basis.
Use In Specific Populations Pregnancy Pregnancy Exposure RegistryThere is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to Iloperidone during pregnancy. For more information contact the National Pregnancy Registry for Atypical Antipsychotics at 1-866-961-2388 or visit http://womensmentalhealth.org/clinical-and-research-programs/pregnancyregistry/.
Risk SummaryNeonates whose mothers are exposed to antipsychotic drugs, including Iloperidone, during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. The limited available data with Iloperidone in pregnant women are not sufficient to inform a drug-associated risk for major birth defects and miscarriage. Iloperidone was not teratogenic when administered orally to pregnant rats during organogenesis at doses up to 26 times the maximum recommended human dose of 24 mg/day on mg/m² basis. However, it prolonged the duration of pregnancy and parturition, increased still births, early intrauterine deaths, increased incidence of developmental delays, and decreased post-partum pup survival. Iloperidone was not teratogenic when administered orally to pregnant rabbits during organogenesis at doses up to 20-times the MRHD on mg/m² basis. However, it increased early intrauterine deaths and decreased fetal viability at term at the highest dose which was also a maternally toxic dose.
The background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.
Clinical ConsiderationsFetal/Neonatal Adverse Reactions
Extrapyramidal and/or withdrawal symptoms, including agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder have been reported in neonates whose mothers were exposed to antipsychotic drugs during the third trimester of pregnancy. These symptoms have varied in severity. Some neonates recovered within hours or days without specific treatment; others required prolonged hospitalization. Monitor neonates for extrapyramidal and/or withdrawal symptoms and manage symptoms appropriately.
DataAnimal Data
In an embryo-fetal development study, pregnant rats were given 4, 16, or 64 mg/kg/day (1.6, 6.5, and 26 times the maximum recommended human dose (MRHD) of 24 mg/day on a mg/m² basis) of iloperidone orally during the period of organogenesis. The highest dose caused increased early intrauterine deaths, decreased fetal weight and length, decreased fetal skeletal ossification, and an increased incidence of minor fetal skeletal anomalies and variations; this dose also caused decreased maternal food consumption and weight gain.
In an embryo-fetal development study, pregnant rabbits were given 4, 10, or 25 mg/kg/day (3, 8, and 20 times the MRHD on a mg/m² basis) of iloperidone during the period of organogenesis. The highest dose caused increased early intrauterine deaths and decreased fetal viability at term; this dose also caused maternal toxicity.
In additional studies in which rats were given iloperidone at doses similar to the above beginning from either pre-conception or from day 17 of gestation and continuing through weaning, adverse reproductive effects included prolonged pregnancy and parturition, increased stillbirth rates, increased incidence of fetal visceral variations, decreased fetal and pup weights, and decreased post-partum pup survival. There were no drug effects on the neurobehavioral or reproductive development of the surviving pups. No-effect doses ranged from 4 to 12 mg/kg except for the increase in stillbirth rates which occurred at the lowest dose tested of 4 mg/kg, which is 1.6 times the MRHD on a mg/m² basis. Maternal toxicity was seen at the higher doses in these studies.
The iloperidone metabolite P95, which is a major circulating metabolite of iloperidone in humans but is not present in significant amounts in rats, was given to pregnant rats during the period of organogenesis at oral doses of 20, 80, or 200 mg/kg/day. No teratogenic effects were seen. Delayed skeletal ossification occurred at all doses. No significant maternal toxicity was produced. Plasma levels of P95 (AUC) at the highest dose tested were 2 times those in humans receiving the MRHD of iloperidone.
Lactation Risk SummaryThere is no information regarding the presence of iloperidone or its metabolites in human milk, the effects of iloperidone on a breastfed child, nor the effects of iloperidone on human milk production. Iloperidone is present in rat milk. Because of the potential for serious adverse reactions in breastfed infants, advise a woman not to breastfeed during treatment with Iloperidone.
DataThe transfer of radioactivity into the milk of lactating rats was investigated following a single dose of [14C] iloperidone at 5 mg/kg. The concentration of radioactivity in milk at 4 hours post-dose was near 10-fold greater than that in plasma at the same time. However, by 24 hours after dosing, concentrations of radioactivity in milk had fallen to values slightly lower than plasma. The metabolic profile in milk was qualitatively similar to that in plasma.
Pediatric UseSafety and effectiveness in pediatric and adolescent patients have not been established.
Geriatric UseClinical Studies of Iloperidone in the treatment of schizophrenia did not include sufficient numbers of patients aged 65 years and over to determine whether or not they respond differently than younger adult patients. Of the 3210 patients treated with Iloperidone in premarketing trials, 25 (0.5%) were ≥ 65 years old and there were no patients ≥ 75 years old.
Elderly patients with dementia-related psychosis treated with Iloperidone are at an increased risk of death compared to placebo. Iloperidone is not approved for the treatment of patients with dementia-related psychosis.
Renal ImpairmentBecause Iloperidone is highly metabolized, with less than 1% of the drug excreted unchanged, renal impairment alone is unlikely to have a significant impact on the pharmacokinetics of Iloperidone. Renal impairment (creatinine clearance < 30 mL/min) had minimal effect on Cmax of iloperidone (given in a single dose of 3 mg) and its metabolites P88 and P95 in any of the 3an
Iloperidone must be titrated slowly from a low starting dose to avoid orthostatic hypotension due to its alphaadrenergic blocking properties. The recommended starting dose for Iloperidone tablets is 1 mg orally twice daily. Dose increases to reach the target range of 6-12 mg twice daily (12_24 mg/day) may be made with daily dosage adjustments not to exceed 2 mg twice daily (4 mg/day). The maximum recommended dose is 12 mg twice daily (24 mg/day). Iloperidone doses above 24 mg/day have not been systematically evaluated in the clinical trials. Efficacy was demonstrated with Iloperidone in a dose range of 6 to 12 mg twice daily. Prescribers should be mindful of the fact that patients need to be titrated to an effective dose of Iloperidone. Thus, control of symptoms may be delayed during the first 1 to 2 weeks of treatment compared to some other antipsychotic drugs that do not require similar titration. Prescribers should also be aware that some adverse effects associated with Iloperidone use are dose related.
Iloperidone can be administered without regard to meals.
Dosage In Special PopulationsDosage adjustment for patients taking Iloperidone concomitantly with potential CYP2D6 inhibitors: Iloperidone dose should be reduced by one-half when administered concomitantly with strong CYP2D6 inhibitors such as fluoxetine or paroxetine. When the CYP2D6 inhibitor is withdrawn from the combination therapy, Iloperidone dose should then be increased to where it was before.
Dosage adjustment for patients taking Iloperidone concomitantly with potential CYP3A4 inhibitors: Iloperidone dose should be reduced by one-half when administered concomitantly with strong CYP3A4 inhibitors such as ketoconazole or clarithromycin. When the CYP3A4 inhibitor is withdrawn from the combination therapy, Iloperidone dose should be increased to where it was before.
Dosage adjustment for patients taking Iloperidone who are poor metabolizers of CYP2D6: Iloperidone dose should be reduced by one-half for poor metabolizers of CYP2D6.
Hepatic Impairment: No dose adjustment to Iloperidone is needed in patients with mild hepatic impairment. Patients with moderate hepatic impairment may require dose reduction, if clinically indicated. Iloperidone is not recommended for patients with severe hepatic impairment.
Maintenance TreatmentIn a longer-term study, Iloperidone was effective in delaying time to relapse in patients with schizophrenia who were stabilized on Iloperidone up to 24 mg/day. Patients should be periodically reassessed to determine the need for maintenance treatment.
Reinitiation Of Treatment In Patients Previously DiscontinuedAlthough there are no data to specifically address reinitiation of treatment, it is recommended that the initiation titration schedule be followed whenever patients have had an interval off Iloperidone of more than 3 days.