Efexor-xr

Overdose

In postmarketing experience, overdose with venlafaxine was reported predominantly in combination with alcohol and/or other medicinal products. The most commonly reported events in overdose include tachycardia, changes in level of consciousness (ranging from somnolence to coma), mydriasis, convulsion, and vomiting. Other reported events include electrocardiographic changes (e.g., prolongation of QT interval, bundle branch block, QRS prolongation), ventricular tachycardia, bradycardia, hypotension, vertigo, and death.

Published retrospective studies report that venlafaxine overdosage may be associated with an increased risk of fatal outcomes compared to that observed with SSRI antidepressant products, but lower than that for tricyclic antidepressants. Epidemiological studies have shown that venlafaxine treated patients have a higher burden of suicide risk factors than SSRI patients. The extent to which the finding of an increased risk of fatal outcomes can be attributed to the toxicity of venlafaxine in overdosage, as opposed to some characteristics of venlafaxine-treated patients, is not clear. Prescriptions for venlafaxine should be written for the smallest quantity of the medicinal product consistent with good patient management in order to reduce the risk of overdose.

Recommended treatment

General supportive and symptomatic measures are recommended; cardiac rhythm and vital signs must be monitored. When there is a risk of aspiration, induction of emesis is not recommended. Gastric lavage may be indicated if performed soon after ingestion or in symptomatic patients. Administration of activated charcoal may also limit absorption of the active substance. Forced diuresis, dialysis, hemoperfusion and exchange transfusion are unlikely to be of benefit. No specific antidotes for venlafaxine are known.

Efexor-XR price

We have no data on the cost of the drug.
However, we will provide data for each active ingredient

Incompatibilities

Not applicable.

Undesirable effects

The most commonly (>1/10) reported adverse reactions in clinical studies were nausea, dry mouth, headache and sweating (including night sweats).

Adverse reactions are listed below by system organ class and frequency.

Frequencies are defined as: very common (>1/10), common (>1/100 to <1/10), uncommon (>1/1,000 to <1/100), rare (>1/10,000 to <1/1,000), not known (cannot be estimated from the available data).

Body System

Very Common

Common

Uncommon

Rare

Not Known

Blood and lymphatic system disorders

Thrombocytopaenia, Blood disorder, (including agranulocytosis, aplastic anaemia, neutropaenia, pancytopaenia)

Immune system disorders

Anaphylactic reaction

Endocrine disorders

Syndrome of Inappropriate antidiuretic hormone secretion (SIADH)

Metabolism and nutrition disorders

Decreased appetite

Hyponatraemia,

Psychiatric disorders

Confusional state, Depersonalization, Anorgasmia, Libido decreased, Nervousness, Insomnia, Abnormal dreams

Hallucination, Derealization, Agitation, Orgasm abnormal (female), Apathy, Hypomania, Bruxism

Mania

Suicidal ideation and suicidal behaviours**, Delirium, Aggression***

Nervous system disorders

Dizziness

Headache*

Somnolence, Tremor, Paraesthesia, Hypertonia

Akathisia/ Psychomotor restlessness, Syncope, Myoclonus, Coordination abnormal, Balance disorder, Dysgeusia

Convulsion,

Neuroleptic Malignant Syndrome (NMS), Serotonergic syndrome, Extrapyramidal disorder, including dystonia and dyskinaesia, Tardive dyskinaesia

Eye disorders

Visual impairment, including vision blurred, Mydriasis, Accommodation disorder

Angle-closure glaucoma

Ear and labyrinth disorders

Tinnitus

Vertigo

Cardiac disorders

Palpitations

Tachycardia

Ventricular fibrillation, Ventricular tachycardia (including Torsade de Pointes)

Vascular disorders

Hypertension, Vasodilatation (mostly flush)

Orthostatic hypotension,

Hypotension, Bleeding (mucous membrane bleeding)

Respiratory, thoracic and mediastinal disorders

Yawning

Dyspnoea

Pulmonary eosinophilia

Gastrointestinal disorders

Nausea, Dry mouth

Vomiting

Diarrhoea, Constipation

Gastrointestinal haemorrhage

Pancreatitis

Hepatobiliary disorders

Hepatitis, Liver function test abnormal

Skin and subcutaneous tissue disorders

Hyperhidrosis (including night sweats)

Angioedema, Photosensitivity reaction, Ecchymosis, Rash, Alopecia

Erythema multiforme, Toxic epidermal necrolysis, Stevens- Johnson syndrome, Pruritus, Urticaria

Musculoskeletal and connective tissue disorders

Rhabdomyolysis

Renal and urinary disorders

Dysuria (mostly urinary hesitation), Pollakiuria

Urinary retention

Urinary incontinence

Reproductive system and breast disorders

Menstrual disorders associated with increased bleeding or irregular bleeding (e.g. menorrhagia, metrorrhagia), Ejaculation disorder, Erectile dysfunction

General disorders and administration site conditions

Asthenia, Fatigue, Chills

Investigations

Blood cholesterol increased

Weight increased, Weight decreased

Electrocardiogram QT prolonged, Bleeding time prolonged, Blood prolactin increased

Discontinuation of venlafaxine (particularly when abrupt) commonly leads to withdrawal symptoms. Dizziness, sensory disturbances (including paraethesia), sleep disturbances (including insomnia and intense dreams), agitation or anxiety, nausea and/or vomiting, tremor, vertigo, headache and flu syndrome are the most commonly reported reactions. Generally, these events are mild to moderate and are self-limiting; however, in some patients, they may be severe and/or prolonged. It is therefore advised that when venlafaxine treatment is no longer required, gradual discontinuation by dose tapering should be carried out.

Paediatric population

In general, the adverse reaction profile of venlafaxine (in placebo-controlled clinical trials) in children and adolescents (ages 6 to 17) was similar to that seen for adults. As with adults, decreased appetite, weight loss, increased blood pressure, and increased serum cholesterol were observed.

In paediatric clinical trials the adverse reaction suicidal ideation was observed. There were also increased reports of hostility and, especially in major depressive disorder, self-harm.

Particularly, the following adverse reactions were observed in paediatric patients: abdominal pain, agitation, dyspepsia, ecchymosis, epistaxis, and myalgia.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme; website: www.mhra.gov.uk/yellowcard

Preclinical safety data

Studies with venlafaxine in rats and mice revealed no evidence of carcinogenesis. Venlafaxine was not mutagenic in a wide range of in vitro and in vivo tests.

Animal studies regarding reproductive toxicity have found in rats a decrease in pup weight, an increase in stillborn pups, and an increase in pup deaths during the first 5 days of lactation. The cause of these deaths is unknown. These effects occurred at 30mg/kg/day, 4 times the human daily dose of 375mg of venlafaxine (on an mg/kg basis). The no-effect dose for these findings was 1.3 times the human dose. The potential risk for humans is unknown.

Reduced fertility was observed in a study in which both male and female rats were exposed to ODV. This exposure was approximately 1 to 2 times that of a human venlafaxine dose of 375mg/day. The human relevance of this finding is unknown.

Pharmacotherapeutic group

Other antidepressants - ATC code: NO6A X16.

Pharmacodynamic properties

Pharmacotherapeutic group: Other antidepressants - ATC code: NO6A X16.

Mechanism of action

The mechanism of venlafaxine's antidepressant action in humans is believed to be associated with its potentiation of neurotransmitter activity in the central nervous system. Preclinical studies have shown that venlafaxine and its major metabolite, O-desmethylvenlafaxine (ODV), are inhibitors of serotonin and noradrenaline reuptake. Venlafaxine also weakly inhibits dopamine uptake. Venlafaxine and its active metabolite reduce β-adrenergic responsiveness after both acute (single dose) and chronic administration. Venlafaxine and ODV are very similar with respect to their overall action on neurotransmitter reuptake and receptor binding.

Venlafaxine has virtually no affinity for rat brain muscarinic, cholinergic, H1-histaminergic or α1-adrenergic receptors in vitro. Pharmacological activity at these receptors may be related to various side effects seen with other antidepressant medicinal products, such as anticholinergic, sedative and cardiovascular side effects.

Venlafaxine does not possess monoamine oxidase (MAO) inhibitory activity.

In vitro studies revealed that venlafaxine has virtually no affinity for opiate or benzodiazepine sensitive receptors.

Major depressive episodes

The efficacy of venlafaxine immediate-release as a treatment for major depressive episodes was demonstrated in five randomised, double-blind, placebo-controlled, short-term trials ranging from 4 to 6 weeks duration, for doses up to 375mg/day. The efficacy of venlafaxine prolonged-release as a treatment for major depressive episodes was established in two placebo-controlled, short-term studies for 8 and 12 weeks duration, which included a dose range of 75 to 225mg/day.

In one longer-term study, adult outpatients who had responded during an 8-week open trial on venlafaxine prolonged-release (75, 150, or 225mg) were randomised to continuation of their same venlafaxine prolonged-release dose or to placebo, for up to 26 weeks of observation for relapse.

In a second longer-term study, the efficacy of venlafaxine in prevention of recurrent depressive episodes for a 12-month period was established in a placebo-controlled double-blind clinical trial in adult outpatients with recurrent major depressive episodes who had responded to venlafaxine treatment (100 to 200mg/day, on a b.i.d. schedule) on the last episode of depression.

Generalised anxiety disorder

The efficacy of venlafaxine prolonged-release capsules as a treatment for generalised anxiety disorder (GAD) was established in two 8-week, placebo-controlled, fixed-dose studies (75 to 225mg/day), one 6-month, placebo-controlled, fixed-dose study (75 to 225mg/day), and one 6-month, placebo-controlled, flexible-dose study (37.5, 75, and 150mg/day) in adult outpatients.

While there was also evidence for superiority over placebo for the 37.5mg/day dose, this dose was not as consistently effective as the higher doses.

Social anxiety disorder

The efficacy of venlafaxine prolonged-release capsules as a treatment for social anxiety disorder was established in four double-blind, parallel-group, 12-week, multi-center, placebo-controlled, flexible-dose studies and one double-blind, parallel-group, 6-month, placebo-controlled, fixed/flexible-dose study in adult outpatients. Patients received doses in a range of 75 to 225mg/day.

There was no evidence for any greater effectiveness of the 150 to 225mg/day group compared to the 75mg/day group in the 6-month study.

Panic disorder

The efficacy of venlafaxine prolonged-release capsules as a treatment for panic disorder was established in two double-blind, 12-week, multi-center, placebo-controlled studies in adult outpatients with panic disorder, with or without agoraphobia. The initial dose in panic disorder studies was 37.5mg/day for 7 days. Patients then received fixed doses of 75 or 150mg/day in one study and 75 or 225mg/day in the other study.

Efficacy was also established in one long-term double-blind, placebo-controlled, parallel-group study of the long-term safety, efficacy, and prevention of relapse in adult outpatients who responded to open-label treatment. Patients continued to receive the same dose of venlafaxine prolonged-release that they had taken at the end of the open-label phase (75, 150, or 225mg).

Pharmacokinetic properties

Venlafaxine is extensively metabolised, primarily to the active metabolite, O-desmethylvenlafaxine (ODV). Mean ± SD plasma half-lives of venlafaxine and ODV are 5±2 hours and 11±2 hours, respectively. Steady-state concentrations of venlafaxine and ODV are attained within 3 days of oral multiple-dose therapy. Venlafaxine and ODV exhibit linear kinetics over the dose range of 75mg to 450mg/day.

Absorption

At least 92% of venlafaxine is absorbed following single oral doses of immediate-release venlafaxine. Absolute bioavailability is 40% to 45% due to presystemic metabolism. After immediate-release venlafaxine administration, the peak plasma concentrations of venlafaxine and ODV occur in 2 and 3 hours, respectively. Following the administration of venlafaxine prolonged-release capsules, peak plasma concentrations of venlafaxine and ODV are attained within 5.5 hours and 9 hours, respectively. When equal daily doses of venlafaxine are administered as either an immediate-release tablet or prolonged-release capsule, the prolonged-release capsule provides a slower rate of absorption, but the same extent of absorption compared with the immediate-release tablet. Food does not affect the bioavailability of venlafaxine and ODV.

Distribution

Venlafaxine and ODV are minimally bound at therapeutic concentrations to human plasma proteins (27% and 30%, respectively). The volume of distribution for venlafaxine at steady-state is 4.4±1.6 L/kg following intravenous administration.

BiotransformationVenlafaxine undergoes extensive hepatic metabolism. In vitro and in vivo studies indicate that venlafaxine is biotransformed to its major active metabolite, ODV, by CYP2D6. In vitro and in vivo studies indicate that venlafaxine is metabolised to a minor, less active metabolite, N-desmethylvenlafaxine, by CYP3A4. In vitro and in vivo studies indicate that venlafaxine is a weak inhibitor of CYP2D6. Venlafaxine did not inhibit CYP1A2, CYP2C9, or CYP3A4.

Elimination

Venlafaxine and its metabolites are excreted primarily through the kidneys. Approximately 87% of a venlafaxine dose is recovered in the urine within 48 hours as either unchanged venlafaxine (5%), unconjugated ODV (29%), conjugated ODV (26%), or other minor inactive metabolites (27%). Mean ± SD plasma steady-state clearances of venlafaxine and ODV are 1.3±0.6 L/h/kg and 0.4±0.2 L/h/kg, respectively.

Special populations

Age and gender

Subject age and gender do not significantly affect the pharmacokinetics of venlafaxine and ODV.

CYP2D6 extensive/poor metabolisers

Plasma concentrations of venlafaxine are higher in CYP2D6 poor metabolisers than extensive metabolisers. Because the total exposure (AUC) of venlafaxine and ODV is similar in poor and extensive metabolisers, there is no need for different venlafaxine dosing regimens for these two groups.

Patients with hepatic impairment

In Child-Pugh A (mildly hepatically impaired) and Child-Pugh B (moderately hepatically impaired) subjects, venlafaxine and ODV half-lives were prolonged compared to normal subjects. The oral clearance of both venlafaxine and ODV was reduced. A large degree of intersubject variability was noted. There are limited data in patients with severe hepatic impairment.

Patients with renal impairment

In dialysis patients, venlafaxine elimination half-life was prolonged by about 180% and clearance reduced by about 57% compared to normal subjects, while ODV elimination half-life was prolonged by about 142% and clearance reduced by about 56%. Dosage adjustment is necessary in patients with severe renal impairment and in patients that require haemodialysis.

5.2 Pharmacokinetic properties

Venlafaxine is extensively metabolised, primarily to the active metabolite, O-desmethylvenlafaxine (ODV). Mean ± SD plasma half-lives of venlafaxine and ODV are 5±2 hours and 11±2 hours, respectively. Steady-state concentrations of venlafaxine and ODV are attained within 3 days of oral multiple-dose therapy. Venlafaxine and ODV exhibit linear kinetics over the dose range of 75mg to 450mg/day.

Absorption

At least 92% of venlafaxine is absorbed following single oral doses of immediate-release venlafaxine. Absolute bioavailability is 40% to 45% due to presystemic metabolism. After immediate-release venlafaxine administration, the peak plasma concentrations of venlafaxine and ODV occur in 2 and 3 hours, respectively. Following the administration of venlafaxine prolonged-release capsules, peak plasma concentrations of venlafaxine and ODV are attained within 5.5 hours and 9 hours, respectively. When equal daily doses of venlafaxine are administered as either an immediate-release tablet or prolonged-release capsule, the prolonged-release capsule provides a slower rate of absorption, but the same extent of absorption compared with the immediate-release tablet. Food does not affect the bioavailability of venlafaxine and ODV.

Distribution

Venlafaxine and ODV are minimally bound at therapeutic concentrations to human plasma proteins (27% and 30%, respectively). The volume of distribution for venlafaxine at steady-state is 4.4±1.6 L/kg following intravenous administration.

Metabolism

Venlafaxine undergoes extensive hepatic metabolism. In vitro and in vivo studies indicate that venlafaxine is biotransformed to its major active metabolite, ODV, by CYP2D6. In vitro and in vivo studies indicate that venlafaxine is metabolised to a minor, less active metabolite, N-desmethylvenlafaxine, by CYP3A4. In vitro and in vivo studies indicate that venlafaxine is a weak inhibitor of CYP2D6. Venlafaxine did not inhibit CYP1A2, CYP2C9, or CYP3A4.

Elimination

Venlafaxine and its metabolites are excreted primarily through the kidneys. Approximately 87% of a venlafaxine dose is recovered in the urine within 48 hours as either unchanged venlafaxine (5%), unconjugated ODV (29%), conjugated ODV (26%), or other minor inactive metabolites (27%). Mean ± SD plasma steady-state clearances of venlafaxine and ODV are 1.3±0.6 L/h/kg and 0.4±0.2 L/h/kg, respectively.

Special populations

Age and gender

Subject age and gender do not significantly affect the pharmacokinetics of venlafaxine and ODV.

CYP2D6 extensive/poor metabolisers

Plasma concentrations of venlafaxine are higher in CYP2D6 poor metabolisers than extensive metabolisers. Because the total exposure (AUC) of venlafaxine and ODV is similar in poor and extensive metabolisers, there is no need for different venlafaxine dosing regimens for these two groups.

Patients with hepatic impairment

In Child-Pugh A (mildly hepatically impaired) and Child-Pugh B (moderately hepatically impaired) subjects, venlafaxine and ODV half-lives were prolonged compared to normal subjects. The oral clearance of both venlafaxine and ODV was reduced. A large degree of intersubject variability was noted. There are limited data in patients with severe hepatic impairment.

Patients with renal impairment

In dialysis patients, venlafaxine elimination half-life was prolonged by about 180% and clearance reduced by about 57% compared to normal subjects, while ODV elimination half-life was prolonged by about 142% and clearance reduced by about 56%. Dosage adjustment is necessary in patients with severe renal impairment and in patients that require haemodialysis.

Effects on ability to drive and use machines

Any psychoactive medicinal product may impair judgment, thinking, and motor skills. Therefore, any patient receiving venlafaxine should be cautioned about their ability to drive or operate hazardous machinery.

Special precautions for disposal and other handling

No special requirements.