No information provided.
The use of A-Methapred (methylprednisolone sodium succinate) sterile powder is contraindicated in premature infants because the reconstitution diluent contains benzyl alcohol. Benzyl alcohol has been reported to be associated with a fatal "Gasping Syndrome" in premature infants. A-Methapred (methylprednisolone sodium succinate) sterile powder is also contraindicated in systemic fungal infections and patients with known hypersensitivity to the product and its constituents.
Depo Medrone (methylprednisolone) powder for injection/infusion is contraindicated:
- in patients who have systemic fungal infections unless specific anti-infective therapy is employed and in cerebral oedema in malaria.
- in patients with known hypersensitivity to Depo Medrone (methylprednisolone) or any component of the formulation.
- for use by the intrathecal route of administration.
Administration of live or live, attenuated vaccines is contraindicated in patients receiving immunosuppressive doses of corticosteroids.
Systemic fungal infections and known hypersensitivity to components.
The use of Depo Medrone (methylprednisolone) (methylprednisolone sodium succinate) sterile powder is contraindicated in premature infants because the reconstitution diluent contains benzyl alcohol. Benzyl alcohol has been reported to be associated with a fatal "Gasping Syndrome" in premature infants. Depo Medrone (methylprednisolone) (methylprednisolone sodium succinate) sterile powder is also contraindicated in systemic fungal infections and patients with known hypersensitivity to the product and its constituents.
Fluid and Electrolyte Disturbances
Sodium retention
Congestive heart failure in susceptible patients
Hypertension
Fluid retention
Potassium loss
Hypokalemic alkalosis
Musculoskeletal
Muscle weakness
Loss of muscle mass
Steroid myopathy
Osteoporosis
Tendon rupture, particularly of the Achilles tendon
Vertebral compression fractures
Aseptic necrosis of femoral and humeral heads
Pathologic fracture of long bones
Gastrointestinal
Peptic ulcer with possible perforation and hemorrhage
Pancreatitis
Abdominal distention
Ulcerative esophagitis
Increases in alanine transaminase (ALT, SGPT), aspartate transaminase (AST, SGOT), and alkaline phosphatase have been observed following corticosteroid treatment. These changes are usually small, not associated with any clinical syndrome and are reversible upon discontinuation.
Dermatologic
Impaired wound healingPetechiae and ecchymoses
May suppress reactions to skin tests
Thin fragile skin
Facial erythema
Increased sweating
Neurological
Increased intracranial pressure with papilledema (pseudo-tumor cerebri) usually after treatment
Convulsions
Vertigo
Headache
Endocrine
Development of Cushingoid state
Suppression of growth in children
Secondary adrenocortical and pituitary unresponsiveness, particularly in times of stress, as in trauma, surgery or illness
Menstrual irregularities
Decreased carbohydrate tolerance
Manifestations of latent diabetes mellitus
Increased requirements of insulin or oral hypoglycemic agents in diabetics
Ophthalmic
Posterior subcapsular cataracts
Increased intraocular pressure
Glaucoma
Exophthalmos
Metabolic
Negative nitrogen balance due to protein catabolism
The following additional reactions have been reported following oral as well as parenteral therapy: Urticaria and other allergic, anaphylactic or hypersensitivity reactions.
Based on conventional studies of safety pharmacology and repeated-dose toxicity, no unexpected hazards were identified. The toxicities seen in the repeated-dose studies were those expected to occur with continued exposure to exogenous adrenocortical steroids.
There was no evidence of a potential for genetic and chromosome mutations in limited studies performed in bacteria and mammalian cells. Long-term studies in animals have not been performed to evaluate carcinogenic potential, as the drug is indicated for short-term treatment only.
Corticosteroids have been shown to be teratogenic in many species when given in doses equivalent to the human dose. In animal reproduction studies, glucocorticoids such as Depo Medrone (methylprednisolone) have been shown to induce malformations (cleft palate, skeletal malformations) and intra-uterine growth retardation.
Pharmacotherapeutic group: Glucocorticoids, ATC code: H02AB04
Depo Medrone (methylprednisolone) is a corticosteroid with an anti-inflammatory activity at least five times that of hydrocortisone. An enhanced separation of glucocorticoid and mineralocorticoid effect results in a reduced incidence of sodium and water retention.
Depo Medrone (methylprednisolone) pharmacokinetics is linear, independent of route of administration.
Distribution
Depo Medrone (methylprednisolone) is widely distributed into the tissues, crosses the blood-brain barrier, and is secreted in breast milk.
The plasma protein binding of Depo Medrone (methylprednisolone) in humans is approximately 77%.
Metabolism
Depo Medrone (methylprednisolone) is extensively bound to plasma proteins, mainly to globulin and less to albumin. Only unbound corticosteroid has pharmacological effects or is metabolised. Metabolism occurs in the liver and to a lesser extent in the kidney. In humans, Depo Medrone (methylprednisolone) is metabolised in the liver to inactive metabolites; the major ones are 20α-hydroxyDepo Medrone (methylprednisolone) and 20β- hydroxyDepo Medrone (methylprednisolone).
Metabolism in the liver occurs primarily via CYP3A2.
Elimination
Metabolites are excreted in the urine.
The mean elimination half-life for total Depo Medrone (methylprednisolone) is in the range of 1.8 to 5.2 hours. Its apparent volume of distribution is approximately 1.4 mL/kg and its total clearance is approximately 5 to 6 mL/min/kg. Mean elimination half-life ranges from 2.4 to 3.5 hours in normal healthy adults and appears to be independent of the route of administration.
Total body clearance following intravenous or intramuscular injection of Depo Medrone (methylprednisolone) to healthy adult volunteers is approximately 15-16l/hour. Peak Depo Medrone (methylprednisolone) plasma levels of 33.67 mcg/100 ml were achieved in 2 hours after a single 40 mg i.m. injection to 22 adult male volunteers. Depo Medrone (methylprednisolone), like many CYP3A4 substrates, may also be a substrate for ATP-binding cassette (ABC) transport protein p-glycoprotein, influencing tissue distribution and interactions with other medicines.
No dosing adjustments are necessary in renal failure. Depo Medrone (methylprednisolone) is haemodialysable.
In patients on corticosteroid therapy subjected to unusual stress, increased dosage of rapidly acting corticosteroids before, during, and after the stressful situation is indicated.
Corticosteroids may mask some signs of infection, and new infections may appear during their use. Infections with any pathogen including viral, bacterial, fungal, protozoan or helminthic infections, in any location of the body, may be associated with the use of corticosteroids alone or in combination with other immunosuppressive agents that affect cellular immunity, humoral immunity, or neutrophil function.1
These infections may be mild, but can be severe and at times fatal. With increasing doses of corticosteroids, the rate of occurrence of infectious complications increases.2 There may be decreased resistance and inability to localize infec-tion when corticosteroids are used.
Prolonged use of corticosteroids may produce posterior subcapsular cataracts, glaucoma with possible damage to the optic nerves, and may enhance the establishment of secondary ocular infections due to fungi or viruses.
Usage in pregnancy: Since adequate human reproduction studies have not been done with corticosteroids, the use of these drugs in pregnancy, nursing mothers or women of child-bearing potential requires that the possible benefits of the drug be weighed against the potential hazards to the mother and embryo or fetus. Infants born of mothers who have received substantial doses of corticosteroids during pregnancy, should be carefully observed for signs of hypoadrenalism.
Average and large doses of hydrocortisone or cortisone can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium. These effects are less likely to occur with the synthetic derivatives except when used in large doses. Dietary salt restriction and potassium supplementation may be necessary. All corticosteroids increase calcium excretion.
Administration of live or live, attenuated vaccines is contraindicated in patients receiving immunosuppressive doses of corticosteroids. Killed or inactivated vaccines may be administered to patients receiving immunosuppressive doses of corticosteroids; however, the response to such vaccines may be diminished. Indicated immunization procedures may be undertaken in patients receiving nonimmunosuppressive doses of corticosteroids.
The use of Depo Medrone (methylprednisolone) (methylprednisolone) Tablets in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate antituberculous regimen.
If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur. During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis.
Persons who are on drugs which suppress the immune system are more susceptible to infections than healthy individuals. Chicken pox and measles, for example, can have a more serious or even fatal course in non-immune children or adults on corticosteroids. In such children or adults who have not had these diseases particular care should be taken to avoid exposure. How the dose, route and duration of corticosteroid administration affects the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If exposed, to chicken pox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chicken pox develops, treatment with antiviral agents may be considered. Similarly, corticosteroids should be used with great care in patients with known or suspected Strongyloides (threadworm) infestation. In such patients, corticosteroid-induced immunosuppression may lead to Strongyloides hyperinfection and dissemination with widespread larval migration, often accompanied by severe enterocolitis and potentially fatal gram-negative septicemia.
PRECAUTIONS General PrecautionsDrug-induced secondary adrenocortical insufficiency may be minimized by gradual reduction of dosage. This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted. Since mineralocorticoid secretion may be impaired, salt and/or a mineralocorticoid should be administered concurrently.
There is an enhanced effect of corticosteroids on patients with hypothyroidism and in those with cirrhosis.
Corticosteroids should be used cautiously in patients with ocular herpes simplex because of possible corneal perforation.
The lowest possible dose of corticosteroid should be used to control the condition under treatment, and when reduction in dosage is possible, the reduction should be gradual.
Psychic derangements may appear when corticosteroids are used, ranging from euphoria, insomnia, mood swings, personality changes, and severe depression, to frank psychotic manifestations. Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids.
Steroids should be used with caution in nonspecific ulcerative colitis, if there is a probability of impending perforation, abscess or other pyogenic infection; diverticulitis; fresh intestinal anastomoses; active or latent peptic ulcer; renal insufficiency; hypertension; osteoporosis; and myasthenia gravis.
Growth and development of infants and children on prolonged corticosteroid therapy should be carefully observed.
Kaposi's sarcoma has been reported to occur in patients receiving corticosteroid therapy. Discontinuation of corticosteroids may result in clinical remission.
Although controlled clinical trials have shown corticosteroids to be effective in speeding the resolution of acute exacerbations of multiple sclerosis, they do not show that corticosteroids affect the ultimate outcome or natural history of the disease. The studies do show that relatively high doses of corticosteroids are necessary to demonstrate a significant effect. (See DOSAGE AND ADMINISTRATION.)
Since complications of treatment with glucocorticoids are dependent on the size of the dose and the duration of treat-ment, a risk/benefit decision must be made in each individual case as to dose and duration of treatment and as to whether daily or intermittent therapy should be used.
REFERENCES
1 Fekety R. Infections associated with corticosteroids and immunosuppressive therapy. In: Gorbach SL, Bartlett JG, Blacklow NR, eds. Infectious Diseases. Philadelphia: WBSaunders Company 1992:1050-1.
2 Stuck AE, Minder CE, Frey FJ. Risk of infectious compli-cations in patients taking glucocorticoids. Rev Infect Dis 1989:11(6):954-63.
The effect of corticosteroids on the ability to drive or use machinery has not been systematically evaluated. Undesirable effects, such as dizziness, vertigo, visual disturbances, and fatigue are possible after treatment with corticosteroids. If affected, patients should not drive or operate machinery.
After reconstitution, the solution should be clear and colourless. Parenteral drug products should wherever possible be visually inspected for particulate matter and discoloration prior to administration.
The initially prepared solution may be diluted with 5% dextrose in water, isotonic saline solution, or 5% dextrose in isotonic saline solution. To avoid compatibility problems with other drugs, the reconstituted Depo Medrone (methylprednisolone) solution should be administered separately, only in the solutions mentioned.