Clenil

Overdose

Aerosol Liquid; Aerosol Powder; SprayAerosol for inhalation dosed; Nasal dosing sprayPressurised inhalation, solutionAerosol, Metered

Chronic overdosage may result in signs/symptoms of hypercorticism. There are no data available on the effects of acute or chronic overdosage with QNASL Nasal Aerosol.

Acute: Inhalation of the drug in doses in excess of those recommended may lead to temporary suppression of adrenal function. This does not require emergency action. In these patients treatment with Clenil diproprionate by inhalation should be continued at a dose sufficient to control asthma; adrenal function recovers in a few days and can be verified by measuring plasma cortisol.

Chronic: Use of inhaled Clenil dipropionate in daily doses in excess of 1,500 micrograms over prolonged periods may lead to some degree of adrenal suppression. Monitoring of adrenal reserve may be indicated. Treatment should be continued at a dose sufficient to control asthma.

Acute overdosage is unlikely to cause problems. The only harmful effect that follows inhalation of large amounts of the drug over a short time period is suppression of HPA function. Specific emergency action need not be taken. Treatment with Qvar should be continued at the recommended dose to control the asthma; HPA function recovers in a day or two.

If excessive doses of beclometasone dipropionate were taken over a prolonged period a degree of atrophy of the adrenal cortex could occur in addition to HPA suppression. In this event the patient should be treated as steroid dependent and transferred to a suitable maintenance dose of a systemic steroid such as prednisolone.

The only harmful effect that follows inhalation of large amounts of the drug over a short time period is suppression of Hypothalamic-Pituitary-Adrenal (HPA) function. No special emergency action need be taken. Treatment with Clenil Aqueous Nasal Spray should be continued at the recommended dose. HPA function recovers in a day or two.

Further management should be as clinically indicated or as recommended by the national poisons centre, where available.

There is no specific treatment for an overdose of beclometasone dipropionate. If overdose occurs, the patient should be treated supportively with appropriate monitoring as necessary

Incompatibilities

Aerosol for inhalation dosed; Nasal dosing sprayPressurised inhalation, solutionAerosol, Metered

None

Not applicable.

Not applicable

Preclinical safety data

In animal studies, propellant HFA-134a has been shown to have no significant pharmacological effects other than at very high exposure concentrations, then narcosis and a relatively weak cardiac sensitising effect were found. The potency of the cardiac sensitisation was less than that of CFC-11 (trichlorofluoromethane).

In studies to detect toxicity, repeated high dose levels of propellant HFA-134a indicated that safety margins based on systemic exposure would be of the order 2200, 1314 and 381 for mouse, rat and dog with respect to humans.

There are no reasons to consider propellant HFA-134a as a potential mutagen, clastogen or carcinogen judged from in vitro and in vivo studies including long-term administration by inhalation in rodents.

Studies of propellant HFA-134a administered to pregnant and lactating rats and rabbits have not revealed any special hazard.

In animals, systemic administration of relatively high doses can cause abnormalities of foetal development including growth retardation and cleft palate. There may therefore be a very small risk of such effects in the human foetus. However, inhalation of beclometasone dipropionate into the lungs avoids the high level of exposure that occurs with administration by systemic routes.

Safety studies with this product in rat and dog showed few, if any, adverse effects other than those normally associated with general steroid exposure including lymphoid tissue alterations such as reduction in thymus, adrenal and spleen weights. An inhalation reproductive study with Qvar Aerosol (an equivalent inhaler) in rats did not exhibit any teratogenic effects.

Pharmacotherapeutic group

Glucocorticoids, ATC Code: R03B A01

Pharmacodynamic properties

Aerosol Liquid; Aerosol Powder; SprayAerosol for inhalation dosed; Nasal dosing sprayPressurised inhalation, solutionAerosol, Metered

Adrenal Function: The effects of QNASL Nasal Aerosol on the HPA axis were evaluated in two 6- week, randomized, double-blind, parallel-group perennial allergic rhinitis trials – one in adult and adolescent patients 12 to 45 years of age and another in children 6 to 11 years of age. In the first study with adolescent and adult patients aged 12 to 45, QNASL Nasal Aerosol 320 mcg, once daily, was compared with both placebo nasal aerosol and a positive control (a placebo/prednisone group that received prednisone 10 mg orally once daily for the final 7 days of the treatment period). In the second study with pediatric patients aged 6 to 11, QNASL Nasal Aerosol 80 mcg once daily was compared to placebo nasal aerosol. HPA-axis function was assessed by 24-hour serial serum cortisol levels prior to the first dose and after 6 weeks of treatment. Patients were domiciled for the 24-hour serum cortisol assessments. The change from baseline in the 24-hour serum cortisol weighted mean for QNASL Nasal Aerosol and placebo after 6 weeks of treatment were compared.

In the HPA–axis study in patients 12 to 45 years of age, baseline geometric mean serum cortisol weighted mean values were similar in the QNASL Nasal Aerosol 320 mcg/day and placebo treatment groups (9.04 and 8.45 mcg/dL, respectively). After 6 weeks of treatment, the geometric mean values were 8.18 and 8.01 mcg/dL, respectively, with a change from baseline in 24-hour serum cortisol weighted mean for the QNASL Nasal Aerosol and placebo groups of 0.86 and 0.44, resulting in a difference of 0.42. The geometric mean ratio for QNASL Nasal Aerosol 320 mcg/day to placebo was 0.96 (95% CI: 0.87, 1.06). For comparison, in the positive-control (prednisone) treatment group, the geometric mean ratio for placebo to placebo/prednisone 10 mg/day was 3.17 (95% CI: 2.68, 3.74).

In the HPA-axis study in patients 6 to 11 years of age, baseline geometric mean serum cortisol weighted mean values were similar in the QNASL Nasal Aerosol 80 mcg/day and placebo treatment groups (5.97 and 6.47 mcg/dL, respectively). After 6 weeks of treatment the geometric mean values were 6.19 and 7.13 mcg/dL, respectively with no decrease from baseline values in both treatment groups. The geometric mean ratio for QNASL Nasal Aerosol 80 mcg/day to placebo was 0.91 (95% CI; 0.81, 1.03).

Clenil dipropionate (BDP) is a pro-drug with weak glucocorticoid receptor binding activity. It is hydrolysed via esterase enzymes to the active metabolite Clenil-17-monopropionate (B-17-MP), which has high topical anti-inflammatory activity.

Pharmacotherapeutic group: Glucocorticoids, ATC Code: R03B A01

Qvar contains beclometasone dipropionate in solution in propellant HFA-134a resulting in an extrafine aerosol. The aerosol droplets are on average much smaller than the beclometasone dipropionate particles delivered by CFC-suspension formulations or dry powder formulations of beclometasone dipropionate. The extrafine particle fraction will be 60% ± 20% of the drug particles ≤ 3.3 microns per shot, ex-actuator.

Radio-labelled deposition studies in adults with mild asthma have demonstrated that the majority of drug (>55% ex-actuator) is deposited in the lung and a small amount (< 35% ex-actuator) is deposited in the oropharynx. These studies were performed with Qvar Aerosol. Qvar Aerosol is a 'press and breathe' inhaler, whereas Clenil is a breath-activated inhaler.

Inhaled beclometasone dipropionate is now well established in the management of asthma. It is a synthetic glucocorticoid and exerts a topical, anti-inflammatory effect on the lungs, with fewer systemic effects than oral corticosteroids.

Comparative clinical studies have demonstrated that asthma patients achieve equivalent pulmonary function and control of symptoms with Qvar at lower total daily doses than CFC containing beclometasone dipropionate aerosol inhalers.

Pharmacodynamic studies in patients with mild asthma given Qvar for 14 days, have shown that there is a linear correlation among urinary free cortisol suppression, dose administered, and serum total-beclometasone levels obtained. At a daily dose of 800 micrograms Qvar, suppression of urinary free cortisol was comparable with that observed with the same daily dose of CFC containing beclometasone dipropionate, indicating a wider safety margin, as Qvar is administered at lower doses than the CFC product.

Following topical administration beclometasone 17,21-dipropionate (BDP) produces potent anti-inflammatory and vasoconstrictor effects.

BDP is a pro-drug with weak corticosteroid receptor binding affinity. It is hydrolysed via esterase enzymes to the highly active metabolite beclometasone-17-monopropionate (B-17-MP), which has high topical anti-inflammatory activity.

Beclometasone dipropionate offers a preventative background treatment for hayfever when taken prior to allergen challenge. After which with regular use, BDP can continue to prevent allergy symptoms from reappearing.

Pharmacokinetic properties

Aerosol Liquid; Aerosol Powder; SprayAerosol for inhalation dosed; Nasal dosing sprayPressurised inhalation, solutionAerosol, MeteredAbsorption

Following intranasal administration, most of the beclomethasone dipropionate undergoes extensive conversion to its active metabolite, beclomethasone-17-monopropionate, during absorption. Plasma concentrations of beclomethasone dipropionate and beclomethasone-17-monopropionate have been measured with QNASL Nasal Aerosol in 2 adult and/or adolescent clinical trials and 1 pediatric clinical trial.

The single-dose pharmacokinetics of QNASL Nasal Aerosol were evaluated in a randomized, openlabel, 3-period, crossover trial in healthy adult volunteers. Systemic levels of beclomethasone-17- monopropionate and beclomethasone dipropionate after single-dose intranasal administration of beclomethasone dipropionate at doses of 80 and 320 mcg were compared with the systemic levels of beclomethasone-17-monopropionate and beclomethasone dipropionate after administration of orally inhaled beclomethasone dipropionate HFA at a dose of 320 mcg (QVAR® Inhalation Aerosol). The results of this trial demonstrated that the systemic bioavailability of QNASL Nasal Aerosol 320 mcg was approximately 27.5% (approximately 4-fold lower) of that of orally inhaled beclomethasone dipropionate HFA 320 mcg/day based on the plasma concentrations of beclomethasone-17- monopropionate (AUClast: 1139.7 vs 4140.3 hr*pg/mL; GMR: 0.275; 90% CI for the GMR: 0.214, 0.354). The peak exposure to QNASL Nasal Aerosol 320 mcg/day was approximately 19.5% (approximately 5-fold lower) of that of orally inhaled beclomethasone dipropionate HFA 320 mcg/day as measured by beclomethasone-17-monopropionate (Cmax: 262.7 vs 1343.7 pg/mL; GMR: 0.195; 90% CI for the GMR: 0.158, 0.241).

Following repeated once-daily administration of QNASL Nasal Aerosol, there was no accumulation or increase in plasma exposure to beclomethasone-17-monopropionate or beclomethasone dipropionate, most likely due to the short plasma half-life relative to the dosing frequency.

Distribution

The in vitro protein binding for beclomethasone-17-monopropionate was reported to be 94% to 96% over the concentration range of 1000 to 5000 pg/mL. The volume of distribution at steady state for beclomethasone dipropionate is moderate (20 L) but more extensive for beclomethasone-17- monopropionate (424 L).

Metabolism

Beclomethasone dipropionate undergoes extensive first-pass metabolism, forming three metabolites via CYP3A4, beclomethasone-17-monopropionate, beclomethasone-21-monopropionate, and beclomethasone. Beclomethasone-17-monopropionate is the major and most active metabolite.

Elimination

The major route of elimination of inhaled beclomethasone dipropionate appears to be via metabolism. More than 90% of inhaled beclomethasone dipropionate is found as beclomethasone-17- monopropionate in the systemic circulation. The mean elimination half-life of beclomethasone-17- monopropionate is 2.8 hours. The terminal elimination half-lives of beclomethasone dipropionate and beclomethasone-17-monopropionate following intranasal dosing with QNASL Nasal Aerosol (320 mcg) were approximately 0.3 hours and 4.5 hours, respectively. Irrespective of the route of administration (injection, oral, or inhalation), beclomethasone dipropionate and its metabolites are mainly excreted in the feces. Less than 10% of the drug and its metabolites are excreted in the urine. It is likely that intranasal beclomethasone dipropionate follows a similar elimination pathway.

Absorption

When administered via inhalation (via metered dose inhaler) there is extensive conversion of BDP to the active metabolite B-17-MP within the lungs prior to systemic absorption. The systemic absorption of B-17-MP arises from both lung deposition and oral absorption of the swallowed dose. When administered orally, in healthy male volunteers, the bioavailability of BDP is negligible but pre-systemic conversion to B-17-MP results in 41% (95% CI 27- 62 %) of the dose being available as B-17-MP.

Metabolism

BDP is cleared very rapidly from the systemic circulation, owing to extensive first pass metabolism. The main product of metabolism is the active metabolite (B-17-MP). Minor inactive metabolites, Clenil-21-monopropionate (B-21-MP) and Clenil (BOH), are also formed but these contribute little to systemic exposure.

Distribution

The tissue distribution at steady state for BDP is moderate (20L) but more extensive for B-17-MP (424L). Plasma protein binding is moderately high (87%).

Elimination

The elimination of BDP and B-17-MP are characterised by high plasma clearance (150 and 120L/h) with corresponding terminal elimination half lives of 0.5h and 2.7h. Following oral administration of tritiated BDP, approximately 60% of the dose was excreted in the faeces within 96 hours mainly as free and conjugated polar metabolites. Approximately 12% of the dose was excreted as free and conjugated polar metabolites in the urine.

The pharmacokinetic profile of Qvar shows that the peak serum concentration for total- beclometasone (BOH) (total of any beclometasone OH and beclometasone dipropionate or monopropionate hydrolysed to beclometasone OH) after single and multiple doses is achieved after 30 minutes. The value at the peak is approximately 2 nanograms/ml after a total daily dose of 800 micrograms and the serum levels after 100, 200 and 400 micrograms are proportional. The principal route of elimination of beclometasone dipropionate and its several metabolites is in the faeces. Between 10% and 15% of an orally administered dose is excreted in the urine, as both conjugated and free metabolites of the drug.

In both single dose and multiple dose pharmacokinetic studies, a dose of 200 micrograms of Qvar achieved comparable total-BOH levels, as a dose of 400 micrograms of CFC containing beclometasone dipropionate aerosol. This provided the scientific rationale for investigating lower total daily doses of Qvar to achieve the same clinical effect.

Pharmacokinetic studies with Qvar have not been carried out in any special populations.

Absorption

Following intranasal administration of BDP in healthy males, the systemic absorption was assessed by measuring the plasma concentrations of its active metabolite B-17-MP, for which the absolute bioavailability following intranasal administration is 44% (95% CI 28%, 70%). After intranasal administration, <1% of the dose is absorbed by the nasal mucosa. The remainder after being cleared from the nose, either by drainage or mucocilary clearance, is available for absorption from the gastrointestinal tract. Plasma B-17-MP is almost entirely due to conversion of BDP absorbed from the swallowed dose.

Following oral administration of BDP in healthy males, the systemic absorption was also assessed by measuring the plasma concentrations of its active metabolite B-17-MP, for which the absolute bioavailability following oral administration is 41% (95% CI 27%, 62%).

Following an oral dose, B-17-MP is absorbed slowly with peak plasma levels reached 3-5 hours after dosing.

Metabolism

BDP is cleared very rapidly from the circulation and plasma concentrations are undetectable (< 50pg/ml) following oral or intranasal dosing. There is rapid metabolism of the majority of the swallowed portion of BDP during its first passage through the liver. The main product of metabolism is the active metabolite (B-17-MP). Minor inactive metabolites, beclometasone-21-monopropionate (B-21-MP) and beclometasone (BOH), are also formed but these contribute little to systemic exposure.

Distribution

The tissue distribution at steady-state for BDP is moderate (20l) but more extensive for B-17-MP (424l). Plasma protein binding of BDP is moderately high (87%).

Elimination

The elimination of BDP and B-17-MP are characterised by high plasma clearance (150 and 120l/h) with corresponding terminal elimination half-lives of 0.5h and 2.7h. Following oral administration of tritiated BDP, approximately 60% of the dose was excreted in the faeces within 96 hours mainly as free and conjugated polar metabolites. Approximately 12% of the dose was excreted as free and conjugated polar metabolites in the urine.

Special precautions for disposal and other handling

Aerosol for inhalation dosed; Nasal dosing sprayPressurised inhalation, solutionAerosol, Metered

Patients have to be instructed to perform a rapid and forced inhalation through the Easyhaler device. Patients have to be instructed not to exhale into the device. Illustrated user's instructions for use accompany each package.

Not applicable.

Refer to Patient Information Leaflet.