Ceftriaxon sandoz

Overdose

In overdose, the symptoms of nausea, vomiting and diarrhoea can occur. Ceftriaxone concentrations cannot be reduced by haemodialysis or peritoneal dialysis. There is no specific antidote. Treatment of overdose should be symptomatic.

Contraindications

History of severe hypersensitivity (e.g. anaphylactic reaction) to any other type of beta-lactam antibacterial agent (penicillins, monobactams and carbapenems).

Ceftriaxone is contraindicated in:

Premature neonates up to a postmenstrual age of 41 weeks (gestational age + chronological age)*

Full-term neonates (up to 28 days of age):

- with hyperbilirubinaemia, jaundice, or who are hypoalbuminaemic or acidotic because these are conditions in which bilirubin binding is likely to be impaired*

- if they require (or are expected to require) intravenous calcium treatment, or calcium-containing infusions due to the risk of precipitation of a ceftriaxone-calcium salt.

* In vitro studies have shown that ceftriaxone can displace bilirubin from its serum albumin binding sites leading to a possible risk of bilirubin encephalopathy in these patients.

Contraindications to lidocaine must be excluded before intramuscular injection of ceftriaxone when lidocaine solution is used as a solvent. See information in the Summary of Product Characteristics of lidocaine, especially contraindications.

Ceftriaxone solutions containing lidocaine should never be administered intravenously.

Incompatibilities

Based on literature reports, ceftriaxone is not compatible with amsacrine, vancomycin, fluconazole and aminoglycosides.

In particular diluents containing calcium, (e.g. Ringer's solution, Hartmann's solution) should not be used to reconstitute ceftriaxone vials or bottles or to further dilute a reconstituted vial or bottle for intravenous administration because a precipitate can form. Ceftriaxone must not be mixed or administered simultaneously with calcium containing solutions including total parenteral nutrition.

If treatment with a combination of another antibiotic with Ceftriaxon Sandoz is intended, administration should not occur in the same syringe or in the same infusion solution.

Undesirable effects

The most frequently reported adverse reactions for ceftriaxone are eosinophilia, leucopenia, thrombocytopenia, diarrhoea, rash, and hepatic enzymes increased.

Data to determine the frequency of ceftriaxone ADRs was derived from clinical trials.

The following convention has been used for the classification of frequency:

Very common (> 1/10)

Common (> 1/100 - < 1/10)

Uncommon (> 1/1000 - < 1/100)

Rare (> 1/10000 - < 1/1000)

Not known (cannot be estimated from the available data)

System Organ Class

Common

Uncommon

Rare

Not Known a

Infections and infestations

Genital fungal infection

Pseudo-membranous colitisb

Superinfectionb

Blood and lymphatic system disorders

Eosinophilia Leucopenia

Thrombocytopenia

Granulocytopenia

Anaemia

Coagulopathy

Haemolytic anaemiab

Agranulocytosis

Immune system disorders

Anaphylactic shock

Anaphylactic reaction

Anaphylactoid reaction

Hypersensitivityb

Nervous system disorders

Headache

Dizziness

Convulsion

Ear and labyrinth disorders

Vertigo

Respiratory, thoracic and mediastinal disorders

Bronchospasm

Gastrointestinal disorders

Diarrhoeab

Loose stools

Nausea

Vomiting

Pancreatitisb

Stomatitis

Glossitis

Hepatobiliary disorders

Hepatic enzyme increased

Gall bladder precipitationb

Kernicterus

Skin and subcutaneous tissue disorders

Rash

Pruritus

Urticaria

Stevens Johnson Syndromeb

Toxic epidermal necrolysisb

Erythema multiforme

Acute generalised exanthematous pustulosis

Renal and urinary disorders

Haematuria

Glycosuria

Oliguria

Renal precipitation (reversible)

General disorders and administration site conditions

Phlebitis

Injection site pain

Pyrexia

Oedema

Chills

Investigations

Blood creatinine increased

Coombs test false positiveb

Galactosaemia test false positiveb

Non enzymatic methods for glucose determination false positiveb

a Based on post-marketing reports. Since these reactions are reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency which is therefore categorised as not known.

Description of selected adverse reactions

Infections and infestations

Reports of diarrhoea following the use of ceftriaxone may be associated with Clostridium difficile. Appropriate fluid and electrolyte management should be instituted.

Ceftriaxone-calcium salt precipitation

Rarely, severe, and in some cases, fatal, adverse reactions have been reported in pre-term and full-term neonates (aged < 28 days) who had been treated with intravenous ceftriaxone and calcium. Precipitations of ceftriaxone-calcium salt have been observed in lung and kidneys post-mortem. The high risk of precipitation in neonates is a result of their low blood volume and the longer half-life of ceftriaxone compared with adults.

Cases of ceftriaxone precipitation in the urinary tract have been reported, mostly in children treated with high doses (e.g. > 80 mg/kg/day or total doses exceeding 10 grams) and who have other risk factors (e.g. dehydration, confinement to bed). This event may be asymptomatic or symptomatic, and may lead to ureteric obstruction and postrenal acute renal failure, but is usually reversible upon discontinuation of ceftriaxone.

Precipitation of ceftriaxone calcium salt in the gallbladder has been observed, primarily in patients treated with doses higher than the recommended standard dose. In children, prospective studies have shown a variable incidence of precipitation with intravenous application - above 30 % in some studies. The incidence appears to be lower with slow infusion (20 - 30 minutes). This effect is usually asymptomatic, but the precipitations have been accompanied by clinical symptoms such as pain, nausea and vomiting in rare cases. Symptomatic treatment is recommended in these cases. Precipitation is usually reversible upon discontinuation of ceftriaxone.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

Ceftriaxon Sandoz price

We have no data on the cost of the drug.
However, we will provide data for each active ingredient

Preclinical safety data

There is evidence from animal studies that high doses of ceftriaxone calcium salt led to formation of concrements and precipitates in the gallbladder of dogs and monkeys, which proved to be reversible. Animal studies produced no evidence of toxicity to reproduction and genotoxicity. Carcinogenicity studies on ceftriaxone were not conducted.

Pharmacotherapeutic group

Antibacterials for systemic use, Third-generation cephalosporins, ATC code: J01DD04.

Pharmacodynamic properties

Pharmacotherapeutic group: Antibacterials for systemic use, Third-generation cephalosporins, ATC code: J01DD04.

Mode of action

Ceftriaxone inhibits bacterial cell wall synthesis following attachment to penicillin binding proteins (PBPs). This results in the interruption of cell wall (peptidoglycan) biosynthesis, which leads to bacterial cell lysis and death.

Resistance

Bacterial resistance to ceftriaxone may be due to one or more of the following mechanisms:

- hydrolysis by beta-lactamases, including extended-spectrum beta-lactamases (ESBLs), carbapenemases and Amp C enzymes that may be induced or stably derepressed in certain aerobic Gram-negative bacterial species.

- reduced affinity of penicillin-binding proteins for ceftriaxone.

- outer membrane impermeability in Gram-negative organisms.

- bacterial efflux pumps.

Susceptibility testing breakpoints

Minimum inhibitory concentration (MIC) breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) are as follows:

Pathogen

Dilution Test

(MIC, mg/L)

Susceptible

Resistant

Enterobacteriaceae

≤ 1

> 2

Staphylococcus spp.

a.

a.

Streptococcus spp.

(Groups A, B, C and G)

b.

b.

Streptococcus pneumoniae

≤ 0.5c.

> 2

Viridans group Streptococci

≤0.5

>0.5

Haemophilus influenzae

≤ 0.12c.

> 0.12

Moraxella catarrhalis

≤ 1

> 2

Neisseria gonorrhoeae

≤ 0.12

> 0.12

Neisseria meningitidis

≤ 0.12 c.

> 0.12

Non-species related

≤ 1d.

> 2

a. Susceptibility inferred from cefoxitin susceptibility.

b. Susceptibility inferred from penicillin susceptibility.

c. Isolates with a ceftriaxone MIC above the susceptible breakpoint are rare and, if found, should be re-tested and, if confirmed, should be sent to a reference laboratory.

d. Breakpoints apply to a daily intravenous dose of 1 g x 1 and a high dose of at least 2 g x 1.

Clinical efficacy against specific pathogens

The prevalence of acquired resistance may vary geographically and with time for selected species and local information on resistance is desirable, particularly when treating severe infections. As necessary, expert advice should be sought when the local prevalence of resistance is such that the utility of ceftriaxone in at least some types of infections is questionable.

Commonly susceptible species

Gram-positive aerobes

Staphylococcus aureus (methicillin-susceptible)£

Staphylococci coagulase-negative (methicillin-susceptible)£

Streptococcus pyogenes (Group A)

Streptococcus agalactiae (Group B)

Streptococcus pneumoniae

Viridans Group Streptococci

Gram-negative aerobes

Borrelia burgdorferi

Haemophilus influenzae

Haemophilus parainfluenzae

Moraxella catarrhalis

Neisseria gonorrhoea

Neisseria meningitidis

Proteus mirabilis

Providencia spp.

Treponema pallidum

Species for which acquired resistance may be a problem

Gram-positive aerobes

Staphylococcus epidermidis+

Staphylococcus haemolyticus+

Staphylococcus hominis+

Gram-negative aerobes

Citrobacter freundii

Enterobacter aerogenes

Enterobacter cloacae

Escherichia coli%

Klebsiella pneumoniae%

Klebsiella oxytoca%

Morganella morganii

Proteus vulgaris

Serratia marcescens

Anaerobes

Bacteroides spp.

Fusobacterium spp.

Peptostreptococcus spp.

Clostridium perfringens

Inherently resistant organisms

Gram-positive aerobes

Enterococcus spp.

Listeria monocytogenes

Gram-negative aerobes

Acinetobacter baumannii

Pseudomonas aeruginosa

Stenotrophomonas maltophilia

Anaerobes

Clostridium difficile

Others:

Chlamydia spp.

Chlamydophila spp.

Mycoplasma spp.

Legionella spp.

Ureaplasma urealyticum

£ All methicillin-resistant staphylococci are resistant to ceftriaxone.

+ Resistance rates >50% in at least one region

% ESBL producing strains are always resistant

Pharmacokinetic properties

Absorption

Intramuscular administration

Following intramuscular injection, mean peak plasma ceftriaxone levels are approximately half those observed after intravenous administration of an equivalent dose. The maximum plasma concentration after a single intramuscular dose of 1 g is about 81 mg/l and is reached in 2 - 3 hours after administration.

The area under the plasma concentration-time curve after intramuscular administration is equivalent to that after intravenous administration of an equivalent dose.

Intravenous administration

After intravenous bolus administration of ceftriaxone 500 mg and 1 g, mean peak plasma ceftriaxone levels are approximately 120 and 200 mg/l respectively. After intravenous infusion of ceftriaxone 500 mg, 1 g and 2 g, the plasma ceftriaxone levels are approximately 80, 150 and 250 mg/l respectively.

Distribution

The volume of distribution of ceftriaxone is 7 - 12 l. Concentrations well above the minimal inhibitory concentrations of most relevant pathogens are detectable in tissue including lung, heart, biliary tract/liver, tonsil, middle ear and nasal mucosa, bone, and in cerebrospinal, pleural, prostatic and synovial fluids. An 8 - 15 % increase in mean peak plasma concentration (Cmax) is seen on repeated administration; steady state is reached in most cases within 48 - 72 hours depending on the route of administration.

Penetration into particular tissues

Ceftriaxone penetrates the meninges. Penetration is greatest when the meninges are inflamed. Mean peak ceftriaxone concentrations in CSF in patients with bacterial meningitis are reported to be up to 25 % of plasma levels compared to 2 % of plasma levels in patients with uninflamed meninges. Peak ceftriaxone concentrations in CSF are reached approximately 4-6 hours after intravenous injection. Ceftriaxone crosses the placental barrier and is excreted in the breast milk at low concentrations.

Protein binding

Ceftriaxone is reversibly bound to albumin. Plasma protein binding is about 95 % at plasma concentrations below 100 mg/l. Binding is saturable and the bound portion decreases with rising concentration (up to 85 % at a plasma concentration of 300 mg/l).

Biotransformation

Ceftriaxone is not metabolised systemically; but is converted to inactive metabolites by the gut flora.

Elimination

Plasma clearance of total ceftriaxone (bound and unbound) is 10 - 22 ml/min. Renal clearance is 5 - 12 ml/min. 50 - 60 % of ceftriaxone is excreted unchanged in the urine, primarily by glomerular filtration, while 40 - 50 % is excreted unchanged in the bile. The elimination half-life of total ceftriaxone in adults is about 8 hours.

Patients with renal or hepatic impairment

In patients with renal or hepatic dysfunction, the pharmacokinetics of ceftriaxone are only minimally altered with the half-life slightly increased (less than two fold), even in patients with severely impaired renal function.

The relatively modest increase in half-life in renal impairment is explained by a compensatory increase in non-renal clearance, resulting from a decrease in protein binding and corresponding increase in non-renal clearance of total ceftriaxone.

In patients with hepatic impairment, the elimination half-life of ceftriaxone is not increased, due to a compensatory increase in renal clearance. This is also due to an increase in plasma free fraction of ceftriaxone contributing to the observed paradoxical increase in total drug clearance, with an increase in volume of distribution paralleling that of total clearance.

Older people

In older people aged over 75 years the average elimination half-life is usually two to three times that of young adults.

Paediatric population

The half-life of ceftriaxone is prolonged in neonates. From birth to 14 days of age, the levels of free ceftriaxone may be further increased by factors such as reduced glomerular filtration and altered protein binding. During childhood, the half-life is lower than in neonates or adults.

The plasma clearance and volume of distribution of total ceftriaxone are greater in neonates, infants and children than in adults.

Linearity/non-linearity

The pharmacokinetics of ceftriaxone are non-linear and all basic pharmacokinetic parameters, except the elimination half-life, are dose dependent if based on total drug concentrations, increasing less than proportionally with dose. Non-linearity is due to saturation of plasma protein binding and is therefore observed for total plasma ceftriaxone but not for free (unbound) ceftriaxone.

Pharmacokinetic/pharmacodynamic relationship

As with other beta-lactams, the pharmacokinetic-pharmacodynamic index demonstrating the best correlation with in vivo efficacy is the percentage of the dosing interval that the unbound concentration remains above the minimum inhibitory concentration (MIC) of ceftriaxone for individual target species (i.e. %T > MIC).

Special warnings and precautions for use

Hypersensitivity reactions

As with all beta-lactam antibacterial agents, serious and occasionally fatal hypersensitivity reactions have been reported. In case of severe hypersensitivity reactions, treatment with ceftriaxone must be discontinued immediately and adequate emergency measures must be initiated. Before beginning treatment, it should be established whether the patient has a history of severe hypersensitivity reactions to ceftriaxone, to other cephalosporins or to any other type of beta-lactam agent. Caution should be used if ceftriaxone is given to patients with a history of non-severe hypersensitivity to other beta-lactam agents.

Severe cutaneous adverse reactions (Stevens Johnson syndrome or Lyell's syndrome/toxic epidermal necrolysis) have been reported; however, the frequency of these events is not known.

Interaction with calcium containing products

Cases of fatal reactions with calcium-ceftriaxone precipitates in lungs and kidneys in premature and full-term neonates aged less than 1 month have been described. At least one of them had received ceftriaxone and calcium at different times and through different intravenous lines. In the available scientific data, there are no reports of confirmed intravascular precipitations in patients, other than neonates, treated with ceftriaxone and calcium-containing solutions or any other calcium-containing products. In vitro studies demonstrated that neonates have an increased risk of precipitation of ceftriaxone-calcium compared to other age groups.

In patients of any age ceftriaxone must not be mixed or administered simultaneously with any calcium-containing intravenous solutions, even via different infusion lines or at different infusion sites. However, in patients older than 28 days of age ceftriaxone and calcium-containing solutions may be administered sequentially one after another if infusion lines at different sites are used or if the infusion lines are replaced or thoroughly flushed between infusions with physiological salt-solution to avoid precipitation. In patients requiring continuous infusion with calcium-containing total parenteral nutrition (TPN) solutions, healthcare professionals may wish to consider the use of alternative antibacterial treatments which do not carry a similar risk of precipitation. If the use of ceftriaxone is considered necessary in patients requiring continuous nutrition, TPN solutions and ceftriaxone can be administered simultaneously, albeit via different infusion lines at different sites. Alternatively, infusion of TPN solution could be stopped for the period of ceftriaxone infusion and the infusion lines flushed between solutions.

Paediatric population

Safety and effectiveness of Ceftriaxon Sandoz in neonates, infants and children have been established for the dosages described under Posology and Method of Administration. Studies have shown that ceftriaxone, like some other cephalosporins, can displace bilirubin from serum albumin.

Ceftriaxon Sandoz is contraindicated in premature and full-term neonates at risk of developing bilirubin encephalopathy.

Immune mediated haemolytic anaemia

An immune mediated haemolytic anaemia has been observed in patients receiving cephalosporin class antibacterials including Ceftriaxon Sandoz. Severe cases of haemolytic anaemia, including fatalities, have been reported during Ceftriaxon Sandoz treatment in both adults and children.

If a patient develops anaemia while on ceftriaxone, the diagnosis of a cephalosporin-associated anaemia should be considered and ceftriaxone discontinued until the aetiology is determined.

Long term treatment

During prolonged treatment complete blood count should be performed at regular intervals.

Colitis/Overgrowth of non-susceptible microorganisms

Antibacterial agent-associated colitis and pseudo-membranous colitis have been reported with nearly all antibacterial agents, including ceftriaxone, and may range in severity from mild to life-threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhoea during or subsequent to the administration of ceftriaxone. Discontinuation of therapy with ceftriaxone and the administration of specific treatment for Clostridium difficile should be considered. Medicinal products that inhibit peristalsis should not be given.

Superinfections with non-susceptible micro-organisms may occur as with other antibacterial agents.

Severe renal and hepatic insufficiency

In severe renal and hepatic insufficiency, close clinical monitoring for safety and efficacy is advised.

Interference with serological testing

Interference with Coombs tests may occur, as Ceftriaxon Sandoz may lead to false-positive test results. Ceftriaxon Sandoz can also lead to false-positive test results for galactosaemia.

Non-enzymatic methods for the glucose determination in urine may give false-positive results. Urine glucose determination during therapy with Ceftriaxon Sandoz should be done enzymatically.

The presence of ceftriaxone may falsely lower estimated blood glucose values obtained with some blood glucose monitoring systems. Please refer to instructions for use for each system. Alternative testing methods should be used if necessary.

Sodium

Each gram of Ceftriaxon Sandoz contains 3.6 mmol sodium. This should be taken into consideration in patients on a controlled sodium diet.

Antibacterial spectrum

Ceftriaxone has a limited spectrum of antibacterial activity and may not be suitable for use as a single agent for the treatment of some types of infections unless the pathogen has already been confirmed. In polymicrobial infections, where suspected pathogens include organisms resistant to ceftriaxone, administration of an additional antibiotic should be considered.

Use of lidocaine

In case a lidocaine solution is used as a solvent, ceftriaxone solutions must only be used for intramuscular injection. Contraindications to lidocaine, warnings and other relevant information as detailed in the Summary of Product Characteristics of lidocaine must be considered before use. The lidocaine solution should never be administered intravenously.

Biliary lithiasis

When shadows are observed on sonograms, consideration should be given to the possibility of precipitates of calcium ceftriaxone. Shadows, which have been mistaken for gallstones, have been detected on sonograms of the gallbladder and have been observed more frequently at ceftriaxone doses of 1 g per day and above. Caution should be particularly considered in the paediatric population. Such precipitates disappear after discontinuation of ceftriaxone therapy. Rarely precipitates of calcium ceftriaxone have been associated with symptoms. In symptomatic cases, conservative nonsurgical management is recommended and discontinuation of ceftriaxone treatment should be considered by the physician based on specific benefit risk assessment.

Biliary stasis

Cases of pancreatitis, possibly of biliary obstruction aetiology, have been reported in patients treated with Ceftriaxon Sandoz. Most patients presented with risk factors for biliary stasis and biliary sludge e.g. preceding major therapy, severe illness and total parenteral nutrition. A trigger or cofactor of Ceftriaxon Sandoz-related biliary precipitation cannot be ruled out.

Renal lithiasis

Cases of renal lithiasis have been reported, which is reversible upon discontinuation of ceftriaxone. In symptomatic cases, sonography should be performed. Use in patients with history of renal lithiasis or with hypercalciuria should be considered by the physician based on specific benefit risk assessment.

Effects on ability to drive and use machines

During treatment with ceftriaxone, undesirable effects may occur (e.g. dizziness), which may influence the ability to drive and use machines. Patients should be cautious when driving or operating machinery.

Special precautions for disposal and other handling

Concentrations for the intravenous injection: 100 mg/ml,

Concentrations for the intravenous infusion: 50 mg/ml

Preparation of solutions for injection and infusion

The use of freshly prepared solutions is recommended.

Ceftriaxon Sandoz should not be mixed in the same syringe with any drug other than 1% Lidocaine Hydrochloride solution (for intramuscular injection only).

The infusion line should be flushed after each administration.

Ceftriaxon Sandoz 2 g powder for solution for injection or infusion

For IV infusion 2 g Ceftriaxon Sandoz is dissolved in 40 ml of one of the following calcium-free infusion fluids: sodium chloride 0.9%, sodium chloride 0.45% + dextrose 2.5%, dextrose 5%, dextrose 10%, dextran 6% in dextrose 5%, hydroxyethly-starch 6 - 10%, water for injections.

The displacement volume of 2 g of Ceftriaxon Sandoz is 1.37 ml in water for injections. When adding 40 ml of water for injections, the final concentration of the reconstituted solution is 48.34 mg/ml.

In neonates, intravenous doses should be given over 60 minutes to reduce the potential risk of bilirubin encephalopathy.

Ceftriaxon Sandoz 1 g powder for solution for injection or infusion

For IV injection 1 g Ceftriaxon Sandoz is dissolved in 10 ml of water for injections. The injection should be administered over 5 minutes, directly into the vein or via the tubing of an intravenous infusion.

For IM injection 1 g Ceftriaxon Sandoz is dissolved in 3.5 ml of 1% Lidocaine Hydrochloride solution. The solution should be administered by deep intramuscular injection. Dosages greater than 1 g should be divided and injected at more than one site.

The displacement volume of 1 g of Ceftriaxon Sandoz is 0.71 ml in water for injections and 1% lidocaine hydrochloride solution. When adding 10 ml of water for injections, the final concentration of the reconstituted solution is 93.37 mg/ml. When adding 3.5 ml of 1% lidocaine hydrochloride solution, the final concentration of the reconstituted solution is 237.53 mg/ml.

Ceftriaxon Sandoz 250 mg powder for solution for injection

For IV injection 250 mg Ceftriaxon Sandoz is dissolved in 2.5 ml of water for injections. The injection should be administered over 5 minutes, directly into the vein or via the tubing of an intravenous infusion.

For IM injection 250 mg Ceftriaxon Sandoz is dissolved in 2 ml of 1% lidocaine hydrochloride solution. The solution should be administered by deep intramuscular injection. Dosages greater than 1 g should be divided and injected at more than one site.

The displacement volume of 250 mg of Ceftriaxon Sandoz is 0.18 ml in water for injections and 1% lidocaine hydrochloride solution. When adding 2.5 ml of water for injections, the final concentration of the reconstituted solution is 93.28 mg/ml. When adding 2 ml of 1% lidocaine hydrochloride solution, the final concentration of the reconstituted solution is 114.68 mg/ml.

Any unused product or waste material should be disposed of in accordance with local requirements.