адемпас

Top 20 drugs with the same components:

Overdose

Inadvertent overdosing with total daily doses of 9 to 25 mg riociguat between 2 to 32 days was reported. Adverse reactions were similar to those seen at lower doses.

In case of overdose, standard supportive measures should be adopted as required.

In case of pronounced hypotension, active cardiovascular support may be required.

Based on the high plasma protein binding riociguat is not expected to be dialysable.

Contraindications

- Co-administration with PDE5 inhibitors (such as sildenafil, tadalafil, vardenafil).

- Severe hepatic impairment (Child Pugh C).

- Pregnancy.

- Co-administration with nitrates or nitric oxide donors (such as amyl nitrite) in any form including recreational drugs called 'poppers'.

- Patients with systolic blood pressure < 95 mm Hg at treatment initiation.

- Patients with pulmonary hypertension associated with idiopathic interstitial pneumonias (PH-IIP).

Incompatibilities

Not applicable.

Pharmaceutical form

Film-coated tablet

Undesirable effects

Summary of the safety profile

The safety of Адемпас has been evaluated in phase III studies of 681 patients with CTEPH and PAH receiving at least one dose of riociguat.

Most of the adverse reactions are caused by relaxation of smooth muscle cells in vasculature or the gastrointestinal tract.

The most commonly reported adverse reactions, occurring in >10% of patients under Адемпас treatment (up to 2.5 mg three times daily), were headache, dizziness, dyspepsia, peripheral oedema, nausea, diarrhoea and vomiting.

Serious haemoptysis and pulmonary haemorrhage, including cases with fatal outcome have been observed in patients with CTEPH or PAH treated with Адемпас.

The safety profile of Адемпас in patients with CTEPH and PAH appeared to be similar, therefore adverse reactions identified from placebo controlled 12 and 16 weeks clinical studies are presented as pooled frequency in the table listed below (see table 1).

Tabulated list of adverse reactions

The adverse reactions reported with Адемпас are listed in the table below by MedDRA system organ class and by frequency. Frequencies are defined as: very common (>1/10), common (> 1/100 to < 1/10) and uncommon (> 1/1,000 to < 1/100).

Table 1: Adverse reactions reported with Адемпас in the phase III studies

MedDRA

System Organ Class

Very common

Common

Uncommon

Infections and infestations

Gastroenteritis

Blood and the lymphatic system disorders

Anaemia (incl. respective laboratory parameters)

Nervous system disorders

Dizziness,

Headache

Cardiac disorders

Palpitations

Vascular disorders

Hypotension

Respiratory, thoracic and mediastinal disorders

Haemoptysis,

Epistaxis,

Nasal congestion

Pulmonary haemorrhage*

Gastrointestinal disorders

Dyspepsia,

Diarrhoea,

Nausea,

Vomiting

Gastritis,

Gastro-oesophageal reflux disease,

Dysphagia,

Gastrointestinal and abdominal pains,

Constipation,

Abdominal distension

General disorders and administration site conditions

Oedema peripheral

* fatal pulmonary haemorrhage was reported in uncontrolled long term extension studies

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

Preclinical safety data

Non-clinical data revealed no specific hazard for humans based on conventional studies of safety pharmacology, single dose toxicity, phototoxicity, genotoxicity and carcinogenicity.

Effects observed in repeat-dose toxicity studies were mainly due to the exaggerated pharmacodynamic activity of riociguat (haemodynamic and smooth muscle relaxing effects).

In growing, juvenile and adolescent rats, effects on bone formation were seen. In juvenile rats, the changes consisted of thickening of trabecular bone and of hyperostosis and remodeling of metaphyseal and diaphyseal bone, whereas in adolescent rats an overall increase of bone mass was observed. No such effects were observed in adult rats.

In a fertility study in rats, decreased testes weights occurred at systemic exposure of about 7-fold of human exposure, whereas no effects on male and female fertility were seen. Moderate passage across the placental barrier was observed. Developmental toxicity studies in rats and rabbits have shown reproductive toxicity of riociguat. In rats, an increased rate of cardiac malformation was observed as well as a reduced gestation rate due to early resorption at maternal systemic exposure of about 7-fold of human exposure (2.5 mg three times daily). In rabbits, starting at systemic exposure of about 3-fold of human exposure (2.5 mg three times daily) abortion and foetal toxicity were seen.

Therapeutic indications

Chronic thromboembolic pulmonary hypertension (CTEPH)

Адемпас is indicated for the treatment of adult patients with WHO Functional Class (FC) II to III with

- inoperable CTEPH,

- persistent or recurrent CTEPH after surgical treatment,

to improve exercise capacity.

Pulmonary arterial hypertension (PAH)

Адемпас, as monotherapy or in combination with endothelin receptor antagonists, is indicated for the treatment of adult patients with pulmonary arterial hypertension (PAH) with WHO Functional Class (FC) II to III to improve exercise capacity.

Efficacy has been shown in a PAH population including aetiologies of idiopathic or heritable PAH or PAH associated with connective tissue disease.

Pharmacotherapeutic group

Antihypertensives for pulmonary arterial hypertension,

Pharmacodynamic properties

Pharmacotherapeutic group: Antihypertensives for pulmonary arterial hypertension,

ATC code: C02KX05

Mechanism of action

Riociguat is a stimulator of soluble guanylate cyclase (sGC), an enzyme in the cardiopulmonary system and the receptor for nitric oxide (NO). When NO binds to sGC, the enzyme catalyses synthesis of the signalling molecule cyclic guanosine monophosphate (cGMP). Intra-cellular cGMP plays an important role in regulating processes that influence vascular tone, proliferation, fibrosis, and inflammation.

Pulmonary hypertension is associated with endothelial dysfunction, impaired synthesis of NO and insufficient stimulation of the NO-sGC-cGMP pathway.

Riociguat has a dual mode of action. It sensitises sGC to endogenous NO by stabilising the NO-sGC binding. Riociguat also directly stimulates sGC independently of NO.

Riociguat restores the NO-sGC-cGMP pathway and leads to increased generation of cGMP.

Pharmacodynamic effects

Riociguat restores the NO-sGC-cGMP pathway resulting in a significant improvement of pulmonary vascular haemodynamics and an increase in exercise ability.

There is a direct relationship between riociguat plasma concentration and haemodynamic parameters such as systemic and pulmonary vascular resistance, systolic blood pressure and cardiac output.

Clinical efficacy and safety

Efficacy in patients with CTEPH

A randomised, double-blind, multi-national, placebo controlled, phase III study (CHEST-1) was conducted in 261 adult patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) (72%) or persistent or recurrent CTEPH after pulmonary endarterectomy (PEA; 28%). During the first 8 weeks riociguat was titrated every 2-weeks based on the patient's systolic blood pressure and signs or symptoms of hypotension to the optimal individual dose (range 0.5 mg to 2.5 mg three times daily) which was then maintained for a further 8 weeks. The primary endpoint of the study was the placebo adjusted change from baseline in 6-minute walk distance (6MWD) at the last visit (week 16).

At the last visit, the increase in 6MWD in patients treated with riociguat was 46 m (95% confidence interval (CI): 25 m to 67 m; p<0.0001), compared to placebo. Results were consistent in the main sub-groups evaluated (ITT analysis, see table 2).

Table 2: Effects of riociguat on 6MWD in CHEST-1 at last visit

Entire patient population

Riociguat

(n=173)

Placebo

(n=88)

Baseline (m)

[SD]

342

[82]

356

[75]

Mean change from baseline (m)

[SD]

39

[79]

-6

[84]

Placebo-adjusted difference (m)

95% CI, [p-value]

46

25 to 67 [<0.0001]

FC III patient population

Riociguat

(n=107)

Placebo

(n=60)

Baseline (m)

[SD]

326

[81]

345

[73]

Mean change from baseline (m)

[SD]

38

[75]

-17

[95]

Placebo-adjusted difference (m)

95% CI

56

29 to 83

FC II patient population

Riociguat

(n=55)

Placebo

(n=25)

Baseline (m)

[SD]

387

[59]

386

[64]

Mean change from baseline (m)

[SD]

45

[82]

20

[51]

Placebo-adjusted difference (m)

95% CI

25

-10 to 61

Inoperable patient population

Riociguat

(n=121)

Placebo

(n=68)

Baseline (m)

[SD]

335

[83]

351

[75]

Mean change from baseline (m)

[SD]

44

[84]

-8

[88]

Placebo-adjusted difference (m)

95% CI

54

29 to 79

Patient population with CTEPH post-PEA

Riociguat

(n=52)

Placebo

(n=20)

Baseline (m)

[SD]

360

[78]

374

[72]

Mean change from baseline (m)

[SD]

27

[68]

1.8

[73]

Placebo- adjusted difference (m)

95% CI

27

-10 to 63

Improvement in exercise capacity was accompanied by improvement in multiple clinically relevant secondary endpoints. These findings were in accordance with improvements in additional haemodynamic parameters.

Table 3: Effects of riociguat in CHEST-1 on PVR, NT-proBNP and WHO functional class at last visit

 

PVR

Riociguat

(n=151)

Placebo

(n=82)

Baseline (dyn·s·cm-5)

[SD]

790.7

[431.6]

779.3

[400.9]

Mean change from baseline (dyn·s·cm-5)

[SD]

-225.7

[247.5]

23.1

[273.5]

Placebo-adjusted difference (dyn·s·cm-5)

95% CI, [p-value]

-246.4

-303.3 to -189.5 [<0.0001]

NT-proBNP

Riociguat

(n=150)

Placebo

(n=73)

Baseline (ng/L)

[SD]

1508.3

[2337.8]

1705.8

[2567.2]

Mean change from baseline (ng/L)

[SD]

-290.7

[1716.9]

76.4

[1446.6]

Placebo-adjusted difference (ng/L)

95% CI, [p-value]

-444.0

-843.0 to -45.0 [<0.0001]

Change in WHO Functional Class

Riociguat

(n=173)

Placebo

(n=87)

Improved

57 (32.9%)

13 (14.9%)

Stable

107 (61.8%)

68 (78.2%)

Deteriorated

9 (5.2%)

6 (6.9%)

p-value

0.0026

PVR= pulmonary vascular resistance

Adverse Events leading to discontinuation occurred at a similar frequency in both treatment groups (riociguat individual dose titration (IDT) 1.0-2.5 mg, 2.9%; placebo, 2.3%).

Long-term treatment

An open-label extension study (CHEST-2) included 237 patients who had completed CHEST-1. In CHEST-2, all patients received an individualised riociguat dose up to 2.5 mg three times daily. The mean change in 6MWD from baseline to week 12 (last observation until week 12) in CHEST-2 (28 weeks on-study for CHEST-1 + CHEST-2) was 57 m in the former 1.0-2.5 mg riociguat group and 43 m in the former placebo group. Improvements in 6MWD persisted at 2 years in CHEST-2. Mean change from baseline for the overall population (N=237) was 57 m at 6 months (n=218), 51 m at 9 months (n=219), 52 m at 12 months (n=209) and 48 m at 24 months (n=193).

The probability of survival at 1 year was 97%, at 2 years 93% and at 3 years 89%. Survival in patients of WHO functional class II at baseline at 1, 2 and 3 years was 97%, 94% and 90% respectively, and for patients of WHO functional class III at baseline was 97%, 93% and 88% respectively.

Efficacy in patients with PAH

A randomised, double-blind, multi-national, placebo controlled, phase III study (PATENT-1) was conducted in 443 adult patients with PAH (riociguat individual dose titration up to 2.5 mg three times daily: n=254, placebo: n=126, riociguat “capped” dose titration (CT) up to 1.5 mg (exploratory dose arm, no statistical testing performed; n=63)). Patients were either treatment-naïve (50%) or pre-treated with ERA (43%) or a prostacyclin analogue (inhaled (iloprost), oral (beraprost) or subcutaneous (treprostinil); 7%) and had been diagnosed with idiopathic or heritable PAH (63.4%), PAH associated with connective tissue disease (25.1%) and congenital heart disease (7.9%).

During the first 8 weeks riociguat was titrated every 2-weeks based on the patient's systolic blood pressure and signs or symptoms of hypotension to the optimal individual dose (range 0.5 mg to 2.5 mg three times daily), which was then maintained for a further 4 weeks. The primary endpoint of the study was placebo-adjusted change from baseline in 6MWD at the last visit (week 12).

At the last visit the increase in 6MWD with riociguat individual dose titration (IDT) was 36 m (95% CI: 20 m to 52 m; p<0.0001) compared to placebo. Treatment-naïve patients (n=189) improved by 38 m, and pre-treated patients (n=191) by 36 m (ITT analysis, see table 4). Further exploratory subgroup analysis revealed a treatment effect of 26 m, (95% CI: 5 m to 46 m) in patients pre-treated with ERAs (n=167) and a treatment effect of 101 m (95% CI: 27 m to 176 m) in patients pre-treated with prostacyclin analogues (n=27).

Table 4: Effects of riociguat on 6MWD in PATENT-1 at last visit

Entire patient population

Riociguat IDT

(n=254)

Placebo

(n=126)

Riociguat CT

(n=63)

Baseline (m)

[SD]

361

[68]

368

[75]

363

[67]

Mean change from baseline (m)

[SD]

30

[66]

-6

[86]

31

[79]

Placebo-adjusted difference (m)

95% CI, [p-value]

36

20 to 52 [<0.0001]

FC III patients

Riociguat IDT

(n=140)

Placebo

(n=58)

Riociguat CT

(n=39)

Baseline (m)

[SD]

338

[70]

347

[78]

351

[68]

Mean change from baseline (m)

[SD]

31

[64]

-27

[98]

29

[94]

Placebo-adjusted difference (m)

95% CI

58

35 to 81

FC II patients

Riociguat IDT

(n=108)

Placebo

(n=60)

Riociguat CT

(n=19)

Baseline (m)

[SD]

392

[51]

393

[61]

378

[64]

Mean change from baseline (m)

[SD]

29

[69]

19

[63]

43

[50]

Placebo-adjusted difference (m)

95% CI

10

-11 to 31

Treatment-naïve patient population

Riociguat IDT

(n=123)

Placebo

(n=66)

Riociguat CT

(n=32)

Baseline (m)

[SD]

370

[66]

360

[80]

347

[72]

Mean change from baseline (m)

[SD]

32

[74]

-6

[88]

49

[47]

Placebo-adjusted difference (m)

95% CI

38

14 to 62

Pre-treated patient population

Riociguat IDT

(n=131)

Placebo

(n=60)

Riociguat CT

(n=31)

Baseline (m)

[SD]

353

[69]

376

[68]

380

[57]

Mean change from baseline (m)

[SD]

27

[58]

-5

[83]

12

[100]

Placebo- adjusted difference (m)

95% CI

36

15 to 56

Improvement in exercise capacity was accompanied by consistent improvement in multiple clinically-relevant secondary endpoints. These findings were in accordance with improvements in additional haemodynamic parameters (see table 5).

Table 5: Effects of riociguat in PATENT-1 on PVR and NT-proBNP at last visit

PVR

Riociguat IDT

(n=232)

Placebo

(n=107)

Riociguat CT

(n=58)

Baseline (dyn·s·cm-5)

[SD]

791

[452.6]

834.1

[476.7]

847.8

[548.2]

Mean change from PVR baseline (dyn·s·cm-5)

[SD]

-223

[260.1]

-8.9

[316.6]

-167.8

[320.2]

Placebo-adjusted difference (dyn·s·cm-5)

95% CI, [p-value]

-225.7

-281.4 to -170.1[<0.0001]

NT-proBNP

Riociguat IDT

(n = 228)

Placebo

(n = 106)

Riociguat CT

(n=54)

Baseline (ng/L)

[SD]

1026.7

[1799.2]

1228.1

[1774.9]

1189.7

[1404.7]

Mean change from baseline (ng/L)

[SD]

-197.9

[1721.3]

232.4

[1011.1]

-471.5

[913.0]

Placebo-adjusted difference (ng/L)

95% CI, [p-value]

-431.8

-781.5 to -82.1 [<0.0001]

Change in WHO Functional Class

Riociguat IDT

(n = 254)

Placebo

(n = 125)

Riociguat CT

(n=63)

Improved

53 (20.9%)

18 (14.4%)

15 (23.8%)

Stable

192 (75.6%)

89 (71.2%)

43 (68.3%)

Deteriorated

9 (3.6%)

18 (14.4%)

5 (7.9%)

p-value

0.0033

Riociguat-treated patients experienced a significant delay in time to clinical worsening versus placebo-treated patients (p = 0.0046; Stratified log-rank test) (see table 6).

Table 6: Effects of riociguat in PATENT-1 on events of clinical worsening

Clinical Worsening Events

Riociguat IDT

(n=254)

Placebo

(n=126)

Riociguat CT

(n=63)

Patients with any clinical worsening

3 (1.2%)

8 (6.3%)

2 (3.2%)

Death

2 (0.8%)

3 (2.4%)

1 (1.6%)

Hospitalisations due to PH

1 (0.4%)

4 (3.2%)

0

Decrease in 6MWD due to PH

1 (0.4%)

2 (1.6%)

1 (1.6%)

Persistent worsening of Functional Class due to PH

0

1 (0.8%)

0

Start of new PH treatment

1 (0.4%)

5 (4.0%)

1 (1.6%)

Patients treated with riociguat showed significant improvement in Borg CR 10 dyspnoea score (mean change from baseline (SD): riociguat -0.4 (2), placebo 0.1 (2); p = 0.0022).

Adverse Events leading to discontinuation occurred less frequently in both riociguat treatment groups than in the placebo group (riociguat IDT 1.0-2.5 mg, 3.1%; riociguat CT 1.6%; placebo, 7.1%).

Long-term treatment

An open-label extension study (PATENT-2) included 396 patients who had completed PATENT-1 at the cut-off-date. In PATENT-2, all patients received an individualised riociguat dose up to 2.5 mg three times daily. The mean change in 6MWD from baseline to week 12 (last observation until week 12) in PATENT-2 (24 weeks on-study for PATENT-1 + PATENT-2) was 52 m in the former 1.0-2.5 mg riociguat group, 45 m in the former placebo group and 52 m in the former 1.0-1.5 mg riociguat group. Improvements in 6MWD persisted at 2 years in PATENT-2. Mean change from baseline for the overall population (N=396) was 53 m at 6 months (n=366), 52 m at 9 months (n=354), 50 m at 12 months (n=351) and 46 m at 24 months (n=316).

The probability of survival at 1 year was 97%, at 2 years 93% and at 3 years 88%. Survival in patients of WHO functional class II at baseline at 1, 2 and 3 years was 98%, 96% and 93% respectively, and for patients of WHO functional class III at baseline was 96%, 91% and 84% respectively.

Patients with pulmonary hypertension associated with idiopathic interstitial pneumonias (PH-IIP)

A randomised, double blind, placebo-controlled phase II study (RISE-IIP) to evaluate the efficacy and safety of riociguat in patients with symptomatic pulmonary hypertension associated with idiopathic interstitial pneumonias (PH-IIP) was terminated early due to an increased risk of mortality and serious adverse events in patients treated with riociguat and a lack of efficacy. More patients taking riociguat died (11% vs. 4%) and had serious adverse events (37% vs. 23%) during the main phase. In the long-term extension, more patients who switched from the placebo group to riociguat (21%) died than those who continued in the riociguat group (3%).

Riociguat is therefore contraindicated in patients with pulmonary hypertension associated with idiopathic interstitial pneumonias.

Paediatric population

The European Medicines Agency has deferred the obligation to submit the results of studies with Адемпас in one or more subsets of the paediatric population in the treatment of pulmonary hypertension.

Pharmacokinetic properties

Absorption

The absolute bioavailability of riociguat is high (94%). Riociguat is rapidly absorbed with maximum concentrations (Cmax) appearing 1-1.5 hours after tablet intake. Intake with food reduced riociguat AUC slightly, Cmax was reduced by 35%.

Bioavailability (AUC and Cmax) is comparable for Адемпас administered orally as a crushed tablet suspended in applesauce or in water compared to a whole tablet.

Distribution

Plasma protein binding in humans is high at approximately 95%, with serum albumin and alpha 1-acidic glycoprotein being the main binding components. The volume of distribution is moderate with volume of distribution at steady state being approximately 30 L.

Biotransformation

N-demethylation, catalysed by CYP1A1, CYP3A4, CYP3A5 and CYP2J2 is the major biotransformation pathway of riociguat leading to its major circulating active metabolite M-1 (pharmacological activity: 1/10th to 1/3rd of riociguat) which is further metabolised to the pharmacologically inactive N-glucuronide.

CYP1A1 catalyses the formation of riociguat's main metabolite in liver and lungs and is known to be inducible by polycyclic aromatic hydrocarbons, which, for example, are present in cigarette smoke.

Elimination

Total riociguat (parent compound and metabolites) is excreted via both renal (33-45%) and biliary/faecal routes (48-59%). Approximately 4-19% of the administered dose was excreted as unchanged riociguat via the kidneys. Approximately 9-44% of the administered dose was found as unchanged riociguat in faeces.

Based on in vitro data riociguat and its main metabolite are substrates of the transporter proteins P-gp (P-glycoprotein) and BCRP (breast cancer resistance protein). With a systemic clearance of about 3-6 L/h, riociguat can be classified as a low-clearance drug. Elimination half-life is about 7 hours in healthy subjects and about 12 hours in patients.

Linearity

Riociguat pharmacokinetics are linear from 0.5 to 2.5 mg. Inter-individual variability (CV) of riociguat exposure (AUC) across all doses is approximately 60%.

Special populations

Gender

Pharmacokinetic data reveal no relevant differences due to gender in the exposure to riociguat.

Paediatric population

No studies have been conducted to investigate the pharmacokinetics of riociguat in paediatric patients.

Elderly population

Elderly patients (65 years or older) exhibited higher plasma concentrations than younger patients, with mean AUC values being approximately 40% higher in elderly, mainly due to reduced (apparent) total and renal clearance.

Inter-ethnic differences

Pharmacokinetic data reveal no relevant inter-ethnic differences.

Different weight categories

Pharmacokinetic data reveal no relevant differences due to weight in the exposure to riociguat.

Hepatic impairment

In cirrhotic patients (non-smokers) with mild hepatic impairment (classified as Child Pugh A) riociguat mean AUC was increased by 35% compared to healthy controls, which is within normal intra-individual variability. In cirrhotic patients (non-smokers) with moderate hepatic impairment (classified as Child Pugh B), riociguat mean AUC was increased by 51% compared to healthy controls. There are no data in patients with severe hepatic impairment (classified as Child Pugh C).

Patients with ALT > 3 x ULN and bilirubin > 2 x ULN were not studied.

Renal impairment

Overall, mean dose- and weight- normalised exposure values for riociguat were higher in subjects with renal impairment compared to subjects with normal renal function. Corresponding values for the main metabolite were higher in subjects with renal impairment compared to healthy subjects. In non-smoking individuals with mild (creatinine clearance 80-50 mL/min), moderate (creatinine clearance <50-30 mL/min) or severe (creatinine clearance <30 mL/min) renal impairment, riociguat plasma concentrations (AUC) were increased by 53%, 139% or 54%, respectively.

Data in patients with creatinine clearance <30 mL/min are limited and there are no data for patients on dialysis.

Due to the high plasma protein binding riociguat is not expected to be dialysable.

Name of the medicinal product

Адемпас

Qualitative and quantitative composition

Riociguat

Special warnings and precautions for use

In pulmonary arterial hypertension, studies with riociguat have been mainly performed in forms related to idiopathic or heritable PAH and PAH associated with connective tissue disease. The use of riociguat in other forms of PAH not studied is not recommended.

In chronic thromboembolic pulmonary hypertension, pulmonary endarterectomy is the treatment of choice as it is a potentially curative option. According to standard medical practice, expert assessment of operability should be done prior to treatment with riociguat.

Pulmonary veno-occlusive disease

Pulmonary vasodilators may significantly worsen the cardiovascular status of patients with pulmonary veno-occlusive disease (PVOD). Therefore, administration of riociguat to such patients is not recommended. Should signs of pulmonary oedema occur, the possibility of associated PVOD should be considered and treatment with riociguat should be discontinued.

Respiratory tract bleeding

In pulmonary hypertension patients there is increased likelihood for respiratory tract bleeding, particularly among patients receiving anticoagulation therapy. A careful monitoring of patients taking anticoagulants according to common medical practice is recommended.

The risk of serious and fatal respiratory tract bleeding may be further increased under treatment with riociguat, especially in the presence of risk factors, such as recent episodes of serious haemoptysis including those managed by bronchial arterial embolisation. Riociguat should be avoided in patients with a history of serious haemoptysis or who have previously undergone bronchial arterial embolisation. In case of respiratory tract bleeding, the prescriber should regularly assess the benefit-risk of treatment continuation.

Serious bleeding occurred in 2.4% (12/490) of patients taking riociguat compared to 0/214 of placebo patients. Serious haemoptysis occurred in 1% (5/490) patients taking riociguat compared to 0/214 patients taking placebo, including one event with fatal outcome. Serious haemorrhagic events also included 2 patients with vaginal haemorrhage, 2 with catheter site haemorrhage, and 1 each with subdural haematoma, haematemesis, and intra-abdominal haemorrhage.

Hypotension

Riociguat has vasodilatory properties which may result in lowering of blood pressure. Before prescribing riociguat, physicians should carefully consider whether patients with certain underlying conditions, could be adversely affected by vasodilatory effects (e.g. patients on antihypertensive therapy or with resting hypotension, hypovolaemia, severe left ventricular outflow obstruction or autonomic dysfunction).

Riociguat must not be used in patients with a systolic blood pressure below 95 mmHg. Patients older than 65 years are at increased risk of hypotension. Therefore, caution should be exercised when administering riociguat in these patients.

Renal impairment

Data in patients with severe renal impairment (creatinine clearance < 30 mL/min) are limited and there are no data for patients on dialysis, therefore riociguat is not recommended in these patients. Patients with mild and moderate renal impairment were included in the pivotal studies. There is increased riociguat exposure in these patients. There is a higher risk of hypotension in these patients, particular care should be exercised during individual dose titration.

Hepatic impairment

There is no experience in patients with severe hepatic impairment (Child Pugh C); riociguat is contraindicated in these patients. PK data show that higher riociguat exposure was observed in patients with moderate hepatic impairment (Child Pugh B). Particular care should be exercised during individual dose titration.

There is no clinical experience with riociguat in patients with elevated liver aminotransferases (> 3 x Upper Limit of Normal (ULN)) or with elevated direct bilirubin (> 2 x ULN) prior to initiation of treatment; riociguat is not recommended in these patients.

Pregnancy/contraception

Адемпас is contraindicated during pregnancy. Therefore, female patients at potential risk of pregnancy must use an effective method of contraception. Monthly pregnancy tests are recommended.

Smokers

Plasma concentrations of riociguat in smokers are reduced compared to non-smokers. Dose adjustment may be necessary in patients who start or stop smoking during treatment with riociguat.

Concomitant use with other medicinal products

- The concomitant use of riociguat with strong multi pathway cytochrome P450 (CYP) and P-glycoprotein (P-gp) / breast cancer resistance protein (BCRP) inhibitors such as azole antimycotics (e.g. ketoconazole, itraconazole) or HIV protease inhibitors (e.g. ritonavir) is not recommended, due to the pronounced increase in riociguat exposure.

- The concomitant use of riociguat with strong CYP1A1 inhibitors, such as the tyrosine kinase inhibitor erlotinib, and strong P-glycoprotein (P-gp) / breast cancer resistance protein (BCRP) inhibitors, such as the immuno-suppressive agent cyclosporine A, may increase riociguat exposure. These medicinal products should be used with caution. Blood pressure should be monitored and dose reduction of riociguat be considered.

Paediatric population

The safety and efficacy of riociguat in children and adolescents below 18 years have not been established. No clinical data are available. Non-clinical data show an adverse effect on growing bone. Until more is known about the implications of these findings the use of riociguat in children and in growing adolescents should be avoided.

Information about excipients

Each 0.5 mg film-coated tablet contains 37.8 mg lactose (as monohydrate).

Each 1 mg film-coated tablet contains 37.2 mg lactose (as monohydrate).

Each 1.5 mg film-coated tablet contains 36.8 mg lactose (as monohydrate).

Each 2 mg film-coated tablet contains 36.3 mg lactose (as monohydrate).

Each 2.5 mg film-coated tablet contains 35.8 mg lactose (as monohydrate).

Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

Effects on ability to drive and use machines

Адемпас has moderate influence on the ability to drive and use machines. Dizziness has been reported and may affect the ability to drive and use machines. Patients should be aware of how they react to this medicine, before driving or operating machines.

Dosage (Posology) and method of administration

Treatment should only be initiated and monitored by a physician experienced in the treatment of CTEPH or PAH.

Posology

Dose titration

The recommended starting dose is 1 mg three times daily for 2 weeks. Tablets should be taken three times daily approximately 6 to 8 hours apart.

Dose should be increased by 0.5 mg three times daily every two weeks to a maximum of 2.5 mg three times daily, if systolic blood pressure is >95 mmHg and the patient has no signs or symptoms of hypotension. In some PAH patients, an adequate response on the 6-minute walk distance (6MWD) may be reached at a dose of 1.5 mg three times a day. If systolic blood pressure falls below 95 mmHg, the dose should be maintained provided the patient does not show any signs or symptoms of hypotension. If at any time during the up-titration phase systolic blood pressure decreases below 95 mmHg and the patient shows signs or symptoms of hypotension the current dose should be decreased by 0.5 mg three times daily.

Maintenance dose

The established individual dose should be maintained unless signs and symptoms of hypotension occur. The maximum total daily dose is 7.5 mg i.e., 2.5 mg 3 times daily. If a dose is missed, treatment should be continued with the next dose as planned.

If not tolerated, dose reduction should be considered at any time.

Food

Tablets can generally be taken with or without food. For patients prone to hypotension, as a precautionary measure, switches between fed and fasted Адемпас intake are not recommended because of increased peak plasma levels of riociguat in the fasting compared to the fed state.

Treatment discontinuation

In case treatment has to be interrupted for 3 days or more, restart treatment at 1 mg three times daily for 2 weeks, and continue treatment with the dose titration regimen as described above.

Transitioning between PDE5 inhibitors and riociguat

Discontinue sildenafil at least 24 hours or tadalafil at least 48 hours prior to administering riociguat. Discontinue riociguat at least 24 hours prior to administering a PDE5 inhibitor. It is recommended to monitor for signs and symptoms of hypotension after any transition.

Special populations

Individual dose titration at treatment initiation allows adjustment of the dose to the patient´s needs.

Paediatric population

The safety and efficacy of riociguat in children and adolescents below 18 years have not been established. No clinical data are available. Non-clinical data show an adverse effect on growing bone. Until more is known about the implications of these findings the use of riociguat in children and in growing adolescents should be avoided.

Elderly population

In elderly patients (65 years or older) there is a higher risk of hypotension and therefore particular care should be exercised during individual dose titration.

Hepatic impairment

Patients with severe hepatic impairment (Child Pugh C) have not been studied and therefore use of Адемпас is contraindicated in these patients. Patients with moderate hepatic impairment (Child Pugh B) showed a higher exposure to this medicine. Particular care should be exercised during individual dose titration.

Renal impairment

Data in patients with severe renal impairment (creatinine clearance <30 mL/min) are limited and there are no data for patients on dialysis. Therefore use of Адемпас is not recommended in these patients.

Patients with moderate renal impairment (creatinine clearance <50 - 30 mL/min) showed a higher exposure to this medicine. There is a higher risk of hypotension in patients with renal impairment, therefore particular care should be exercised during individual dose titration.

Smokers

Current smokers should be advised to stop smoking due to a risk of a lower response. Plasma concentrations of riociguat in smokers are reduced compared to non-smokers. A dose increase to the maximum daily dose of 2.5 mg three times daily may be required in patients who are smoking or start smoking during treatment.

A dose decrease may be required in patients who stop smoking.

Method of administration

For oral use.

Crushed tablets

For patients who are unable to swallow whole tablets, Адемпас tablets may be crushed and mixed with water or soft foods such as applesauce immediately prior to use and administered orally.

Special precautions for disposal and other handling

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.