No specific information is available on the treatment of overdosage with %medicine_name% or quinapril monotherapy; treatment should be symptomatic and supportive. Therapy with %medicine_name% should be discontinued, and the patient should be observed. Dehydration, electrolyte imbalance, and hypotension should be treated by established procedures.
The oral median lethal dose of quinapril/hydrochlorothiazide in combination ranges from 1063/664 to 4640/2896 mg/kg in mice and rats. Doses of 1440 to 4280 mg/kg of quinapril cause significant lethality in mice and rats. In single-dose studies of hydrochlorothiazide, most rats survived doses up to 2.75 g/kg.
Data from human overdoses of ACE inhibitors are scanty; the most likely manifestation of human quinapril overdosage is hypotension. In human hydrochlorothiazide overdose, the most common signs and symptoms observed have been those of dehydration and electrolyte depletion (hypokalemia, hypochloremia, hyponatremia). If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias.
Laboratory determinations of serum levels of quinapril and its metabolites are not widely available, and such determinations have, in any event, no established role in the management of quinapril overdose.
No data are available to suggest physiological maneuvers (e.g., maneuvers to change the pH of the urine) that might accelerate elimination of quinapril and its metabolites. Hemodialysis and peritoneal dialysis have little effect on the elimination of quinapril and quinaprilat.
Angiotensin II could presumably serve as a specific antagonist-antidote in the setting of quinapril overdose, but angiotensin II is essentially unavailable outside of scattered research facilities. Because the hypotensive effect of quinapril is achieved through vasodilation and effective hypovolemia, it is reasonable to treat quinapril overdose by infusion of normal saline solution.
%medicine_name% is contraindicated in patients who are hypersensitive to quinapril or hydrochlorothiazide and in patients with a history of angioedema related to previous treatment with an ACE inhibitor.
Because of the hydrochlorothiazide components, this product is contraindicated in patients with anuria or hypersensitivity to other sulfonamide-derived drugs.
Do not co-administer %medicine_name% with aliskiren:
%medicine_name% has been evaluated for safety in 1571 patients in controlled and uncontrolled studies. Of these, 498 were given quinapril plus hydrochlorothiazide for at least 1 year, with 153 patients extending combination therapy for over 2 years. In clinical trials with %medicine_name%, no adverse experience specific to the combination has been observed. Adverse experiences that have occurred have been limited to those that have been previously reported with quinapril or hydrochlorothiazide.
Adverse experiences were usually mild and transient, and there was no relationship between side effects and age, sex, race, or duration of therapy. Discontinuation of therapy because of adverse effects was required in 2.1% in patients in controlled studies. The most common reasons for discontinuation of therapy with %medicine_name% were cough (1.0%; see PRECAUTIONS) and headache (0.7%).
Adverse experiences probably or possibly related to therapy or of unknown relationship to therapy occurring in 1% or more of the 943 patients treated with quinapril plus hydrochlorothiazide in controlled trials are shown below.
Percent of Patients in Controlled Trials | ||
Quinapril/HCTZ N = 943 |
Placebo N = 100 |
|
Headache | 6.7 | 30.0 |
Dizziness | 4.8 | 4.0 |
Coughing | 3.2 | 2.0 |
Fatigue | 2.9 | 3.0 |
Myalgia | 2.4 | 5.0 |
Viral Infection | 1.9 | 4.0 |
Rhinitis | 2.0 | 3.0 |
Nausea and/or Vomiting | 1.8 | 6.0 |
Abdominal Pain | 1.7 | 4.0 |
Back Pain | 1.5 | 2.0 |
Diarrhea | 1.4 | 1.0 |
Upper Respiratory Infection | 1.3 | 4.0 |
Insomnia | 1.2 | 2.0 |
Somnolence | 1.2 | 0.0 |
Bronchitis | 1.2 | 1.0 |
Dyspepsia | 1.2 | 2.0 |
Asthenia | 1.1 | 1.0 |
Pharyngitis | 1.1 | 2.0 |
Vasodilatation | 1.0 | 1.0 |
Vertigo | 1.0 | 2.0 |
Chest Pain | 1.0 | 2.0 |
Clinical adverse experiences probably, possibly, or definitely related or of uncertain relationship to therapy occurring in ≥ 0.5% to < 1.0% (except as noted) of the patients treated with quinapril/HCTZ in controlled and uncontrolled trials (N=1571) and less frequent, clinically significant events seen in clinical trials or postmarketing experience (the rarer events are in italics) include (listed by body system):
BODY AS A WHOLE: Asthenia, Malaise
CARDIOVASCULAR: Palpitation, Tachycardia, Heart Failure, Hyperkalemia, Myocardial Infarction, Cerebrovascular Accident, Hypertensive Crisis, Angina Pectoris, Orthostatic Hypotension, Cardiac Rhythm Disturbance
GASTROINTESTINAL: Mouth or Throat Dry, Gastrointestinal Hemorrhage, Pancreatitis, Abnormal Liver Function Tests
NERVOUS/PSYCHIATRIC: Nervousness, Vertigo, Paresthesia
RESPIRATORY: Sinusitis, Dyspnea
INTEGUMENTARY: Pruritus, Sweating Increased, Erythema Multiforme, Exfoliative Dermatitis, Photosensitivity Reaction, Alopecia, Pemphigus
UROGENITAL SYSTEM: Acute Renal Failure, Impotence
OTHER: Agranulocytosis, Thrombocytopenia, Arthralgia
Angioedema: Angioedema has been reported in 0.1% of patients receiving quinapril (0.1%) (see WARNINGS).
Postmarketing ExperienceThe following serious nonfatal adverse events, regardless of their relationship to quinapril and HCTZ combination tablets, have been reported during extensive postmarketing experience:
BODY AS A WHOLE: Shock, accidental injury, neoplasm, cellulitis, ascites, generalized edema, hernia and anaphylactoid reaction.
CARDIOVASCULAR SYSTEM: Bradycardia, cor pulmonale, vasculitis, and deep thrombosis.
DIGESTIVE SYSTEM: Gastrointestinal carcinoma, cholestatic jaundice, hepatitis, esophagitis, vomiting, and diarrhea.
EYE DISORDERS: Acute myopia and acute angle closure glaucoma (see WARNINGS).
HEMIC SYSTEM: Anemia.
METABOLIC AND NUTRITIONAL DISORDERS: Weight loss.
MUSCULOSKELETAL SYSTEM: Myopathy, myositis, and arthritis.
NERVOUS SYSTEM: Paralysis, hemiplegia, speech disorder, abnormal gait, meningism, and amnesia.
RESPIRATORY SYSTEM: Pneumonia, asthma, respiratory infiltration, and lung disorder.
SKIN AND APPENDAGES: Urticaria, macropapular rash, and petechiases.
SPECIAL SENSES: Abnormal vision.
UROGENITAL SYSTEM: Kidney function abnormal, albuminuria, pyuria, hematuria, and nephrosis.
Quinapril monotherapy has been evaluated for safety in 4960 patients. In clinical trials adverse events which occurred with quinapril were also seen with %medicine_name%. In addition, the following were reported for quinapril at an incidence > 0.5%: depression, back pain, constipation, syncope, and amblyopia.
Hydrochlorothiazide has been extensively prescribed for many years, but there has not been enough systematic collection of data to support an estimate of the frequency of the observed adverse reactions. Within organ-system groups, the reported reactions are listed here in decreasing order of severity, without regard to frequency.
BODY AS A WHOLE: Weakness.
CARDIOVASCULAR: Orthostatic hypotension (may be potentiated by alcohol, barbiturates, or narcotics).
DIGESTIVE: Pancreatitis, jaundice (intrahepatic cholestatic), sialadenitis, vomiting, diarrhea, cramping, nausea, gastric irritation, constipation, and anorexia.
NEUROLOGIC: Vertigo, lightheadedness, transient blurred vision, headache, paresthesia, xanthopsia, weakness, and restlessness.
MUSCULOSKELETAL: Muscle spasm.
HEMATOLOGIC: Aplastic anemia, agranulocytosis, leukopenia, thrombocytopenia, and hemolytic anemia.
RENAL: Renal failure, renal dysfunction, interstitial nephritis (see WARNINGS).
METABOLIC: Hyperglycemia, glycosuria, and hyperuricemia.
HYPERSENSITIVITY: Necrotizing angiitis, Stevens-Johnson syndrome, respiratory distress (including pneumonitis and pulmonary edema), purpura, urticaria, rash, and photosensitivity.
Clinical Laboratory Test Findings Serum Electrolytes:See PRECAUTIONS.
Creatinine, Blood Urea NitrogenIncreases ( > 1.25 times the upper limit of normal) in serum creatinine and blood urea nitrogen were observed in 3% and 4%, respectively, of patients treated with %medicine_name%. Most increases were minor and reversible, which can occur in patients with essential hypertension but most frequently in patients with renal artery stenosis (see PRECAUTIONS).
PBI and Tests of Parathyroid FunctionSee PRECAUTIONS.
HematologySee WARNINGS.
Other (Causal Relationships Unknown)Other clinically important changes in standard laboratory tests were rarely associated with %medicine_name% administration. Elevations in uric acid, glucose, magnesium, cholesterol, triglyceride, and calcium (see PRECAUTIONS) have been reported.
%medicine_name% is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including the class to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with %medicine_name%.
Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).
Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.
Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.
Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.
This fixed combination is not indicated for the initial therapy of hypertension (see DOSAGE AND ADMINISTRATION).
In using %medicine_name%, consideration should be given to the fact that another angiotensinconverting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen-vascular disease. Available data are insufficient to show that quinapril does not have a similar risk (see WARNINGS: Neutropenia/Agranulocytosis).
Angioedema In Black PatientsBlack patients receiving ACE inhibitor monotherapy have been reported to have a higher incidence of angioedema compared to non-blacks. It should also be noted that in controlled clinical trials, ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks.
Tell female patients of childbearing age about the consequences of exposure to %medicine_name% during pregnancy. Discuss treatment options with women planning to become pregnant. Ask patients to report pregnancies to their physicians as soon as possible.
%medicine_name% is available in tablets of three different strengths:
10/12.5 tablets: pink, scored elliptical, biconvex, film-coated tablets coded “PD 222” on one side. Each tablet contains 10 mg of quinapril and 12.5 mg of hydrochlorothiazide.
NDC 0071-0222-23: 90 tablet bottles
20/12.5 tablets: pink, scored triangular, film-coated tablets coded “PD 220” on one side. Each tablet contains 20 mg of quinapril and 12.5 mg of hydrochlorothiazide.
NDC 0071-0220-23: 90 tablet bottles
20/25 tablets: pink, round, biconvex, film-coated tablets coded “PD 223” on one side. Each tablet contains 20 mg of quinapril and 25 mg of hydrochlorothiazide.
NDC 0071-0223-23: 90 tablet bottles
Dispense in tight containers as defined in the USP.
Store at Controlled Room Temperature 20–25°C (68–77°F).
Distributed by: Parke-Davis, Division of Pfizer Inc., NY, NY 10017. Revised September 2015
Presumably because angiotensin converting inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors (including quinapril) may be subject to a variety of adverse reactions, some of them serious.
Head And Neck AngioedemaAngioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors and has been seen in 0.1% of patients receiving quinapril. In two similarly sized US postmarketing quinapril trials that, combined, enrolled over 3,000 black patients and over 19,000 non-blacks, angioedema was reported in 0.30% and 0.55% of blacks (in Study 1 and 2, respectively) and 0.39% and 0.17% of non-blacks. Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, treatment with %medicine_name% should be discontinued immediately, the patient treated in accordance with accepted medical care, and carefully observed until the swelling disappears. In instances where swelling is confined to the face and lips, the condition generally resolves without treatment; antihistamines may be useful in relieving symptoms. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, emergency therapy including, but not limited to, subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) should be promptly administered (see PRECAUTIONS and ADVERSE REACTIONS).
Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.
Intestinal AngioedemaIntestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.
Patients With A History Of AngioedemaPatients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see also CONTRAINDICATIONS).
Anaphylactoid Reactions During DesensitizationTwo patients undergoing desensitizing treatment with Hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent challenge.
Anaphylactoid Reactions During Membrane ExposureAnaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.
Hepatic FailureRarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical follow-up.
Hypotension%medicine_name% can cause symptomatic hypotension, probably not more frequently than either monotherapy. It was reported in 1.2% of 1,571 patients receiving %medicine_name% during clinical trials. Like other ACE inhibitors, quinapril has been only rarely associated with hypotension in uncomplicated hypertensive patients.
Symptomatic hypotension sometimes associated with oliguria and/or progressive azotemia, and rarely acute renal failure and/or death, include patients with the following conditions or characteristics: heart failure, hyponatremia, high dose diuretic therapy, recent intensive diuresis or increase in diuretic dose, renal dialysis or severe volume and/or salt depletion of any etiology. Volume and/or salt depletion should be corrected before initiating therapy with %medicine_name%.
%medicine_name% should be used cautiously in patients receiving concomitant therapy with other antihypertensives. The thiazide component of %medicine_name% may potentiate the action of other antihypertensive drugs, especially ganglionic or peripheral adrenergicblocking drugs. The antihypertensive effects of the thiazide component may also be enhanced in the postsympathectomy patients.
In patients at risk of excessive hypotension, therapy with %medicine_name% should be started under close medical supervision. Such patients should be followed closely for the first 2 weeks of treatment and whenever the dosage of quinapril or diuretic is increased. Similar considerations may apply to patients with ischemic heart or cerebrovascular disease in whom an excessive fall in blood pressure could result in myocardial infarction or cerebrovascular accident.
If excessive hypotension occurs, the patient should be placed in a supine position and, if necessary, treated with intravenous infusion of normal saline. %medicine_name% treatment usually can be continued following restoration of blood pressure and volume. If symptomatic hypotension develops, a dose reduction or discontinuation of %medicine_name% may be necessary.
Impaired Renal Function%medicine_name% should be used with caution in patients with severe renal disease. Thiazides may precipitate azotemia in such patients, and the effects of repeated dosing may be cumulative.
When the renin-angiotensin-aldosterone system is inhibited by quinapril, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure, whose renal function may depend on the activity of the renin-angiotensinaldosterone system, treatment with angiotensin-converting enzyme inhibitors (including quinapril) may be associated with oliguria and/or progressive azotemia and (rarely) with acute renal failure and/or death.
In clinical studies in hypertensive patients with unilateral renal artery stenosis, treatment with ACE inhibitors was associated with increases in blood urea nitrogen and serum creatinine; these increases were reversible upon discontinuation of ACE inhibitor, concomitant diuretic, or both. When such patients are treated with %medicine_name%, renal function should be monitored during the first few weeks of therapy.
Some quinapril-treated hypertensive patients with no apparent preexisting renal vascular diseases have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when quinapril has been given concomitantly with a diuretic. This is more likely to occur in patients with pre-existing renal impairment. Dosage reduction of %medicine_name% may be required. Evaluation of the hypertensive patients should also include assessment of the renal function (see DOSAGE AND ADMINISTRATION).
Neutropenia/AgranulocytosisAnother ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression rarely in patients with uncomplicated hypertension, but more frequently in patients with renal impairment, especially if they also have a collagen vascular disease, such as systemic lupus erythematosus or scleroderma. Agranulocytosis did occur during quinapril treatment in one patient with a history of neutropenia during previous captopril therapy. Available data from clinical trials of quinapril are insufficient to show that, in patients without prior reactions to other ACE inhibitors, quinapril does not cause agranulocytosis at similar rates. As with other ACE inhibitors, periodic monitoring of white blood cell counts in patients with collagen vascular disease and/or renal disease should be considered.
Fetal Toxicity Pregnancy Category DUse of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue %medicine_name% as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.
In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue %medicine_name%, unless it is considered life-saving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to %medicine_name% for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use).
Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that occurred in adults.
No teratogenic effects of quinapril were seen in studies of pregnant rats and rabbits. On a mg/kg basis, the doses used were up to 180 times (in rats) and one time (in rabbits) the maximum recommended human dose. No teratogenic effects of %medicine_name% were seen in studies of pregnant rats and rabbits. On a mg/kg (quinapril/hydrochlorothiazide) basis, the doses used were up to 188/94 times (in rats) and 0.6/0.3 times (in rabbits) the maximum recommended human dose.
Impaired Hepatic Function%medicine_name% should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Also, since the metabolism of quinapril to quinaprilat is normally dependent upon hepatic esterases, patients with impaired liver function could develop markedly elevated plasma levels of quinapril. No normal pharmacokinetic studies have been carried out in hypertensive patients with impaired liver function.
Systemic Lupus ErythematosusThiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus.
Acute Myopia And Secondary Angle-Closure GlaucomaHydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.
PRECAUTIONS General Serum Electrolyte AbnormalitiesIn clinical trials, hyperkalemia (serum potassium ≥ 5.8 mmol/L) occurred in approximately 2% of patients receiving quinapril. In most cases, elevated serum potassium levels were isolated values which resolved despite continued therapy. Less than 0.1% of patients discontinued therapy due to hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of other drugs that raise serum potassium levels.
Hydrochlorothiazide can cause hypokalemia and hyponatremia. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. The risk of hyperkalemia may be increased in patients with renal insufficiency, diabetes mellitus or with concomitant use of drugs that raise serum potassium (see DRUG INTERACTIONS). The risk of hypokalemia may be increased in patients with cirrhosis, brisk diuresis, or with concomitant use of drugs that lower serum potassium. Monitor serum electrolytes periodically.
Other Metabolic DisturbancesHydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides.
Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients.
Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving %medicine_name%.
CoughPresumably due to the inhibition of the degradation of endogenous bradykinin, persistent nonproductive cough has been reported with all ACE inhibitors, resolving after discontinuation of therapy. ACE inhibitor-induced cough should be considered in the differential diagnosis of cough.
Surgery/AnesthesiaIn patients undergoing surgery or during anesthesia with agents that produce hypotension, quinapril will block the angiotensin II formation that could otherwise occur secondary to compensatory renin release. Hypotension that occurs as a result of this mechanism can be corrected by volume expansion.
Laboratory TestsThe hydrochlorothiazide component of %medicine_name% may decrease serum PBI levels without signs of thyroid disturbance.
Therapy with %medicine_name% should be interrupted for a few days before carrying out tests of parathyroid function.
Carcinogenesis, Mutagenesis, Impairment Of FertilityCarcinogenicity, mutagenicity, and fertility studies have not been conducted in animals with %medicine_name%.
Quinapril hydrochloride was not carcinogenic in mice or rats when given in doses up to 75 or 100 mg/kg/day (50 or 60 times the maximum human daily dose, respectively, on a mg/kg basis and 3.8 or 10 times the maximum human daily dose on a mg/m² basis) for 104 weeks. Female rats given the highest dose level had an increased incidence of mesenteric lymph node hemangiomas and skin/subcutaneous lipomas. Neither quinapril nor quinaprilat were mutagenic in the Ames bacterial assay with or without metabolic activation. Quinapril was also negative in the following genetic toxicology studies: in vitro mammalian cell point mutation, sister chromatid exchange in cultured mammalian cells, micronucleus test with mice, in vitro chromosome aberration with V79 cultured lung cells, and in an in vivo cytogenetic study with rat bone marrow. There were no adverse effects on fertility or reproduction in rats at doses up to 100 mg/kg/day (60 and 10 times the maximum daily human dose when based on mg/kg and mg/m², respectively).
Under the auspices of the National Toxicology Program, rats and mice received hydrochlorothiazide in their feed for 2 years, at doses up to 600 mg/kg/day in mice and up to 100 mg/kg/day in rats. These studies uncovered no evidence of a carcinogenic potential of hydrochlorothiazide in rats or female mice, but there was “equivocal” evidence of hepatocarcinogenicity in male mice. Hydrochlorothiazide was not genotoxic in in vitro assays using strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 of Salmonella typhimurium (the Ames test); in the Chinese hamster ovary (CHO) test for chromosomal aberrations; or in vivo assays using mouse germinal cell chromosomes, Chinese hamster bone marrow chromosomes, and the Drosophila sex-linked recessive lethal trait gene. Positive test results were obtained in the in vitro CHO sister chromatid exchange (clastogenicity) test and in the mouse lymphoma cell (mutagenicity) assays, using concentrations of hydrochlorothiazide of 43 to 1300 μg/mL. Positive test results were also obtained in the Aspergillus nidulans nondisjunction assay, using an unspecified concentration of hydrochlorothiazide.
Hydrochlorothiazide had no adverse effects on the fertility of mice and rats of either sex in studies wherein these species were exposed, via their diets, to doses of up to 100 and 4 mg/kg/day, respectively, prior to mating and throughout gestation.
Nursing MothersBecause quinapril and hydrochlorothiazide are secreted in human milk, caution should be exercised when %medicine_name% is administered to a nursing woman.
Because of the potential for serious adverse reactions in nursing infants from hydrochlorothiazide and the unknown effects of quinapril in infants, a decision should be made whether to discontinue nursing or to discontinue %medicine_name%, taking into account the importance of the drug to the mother.
Geriatric UseClinical studies of quinapril HCl/hydrochlorothiazide did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Pediatric Use Neonates With A History Of In Utero Exposure To %medicine_name%:If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function. Removal of quinapril, which crosses the placenta, from the neonatal circulation is not significantly accelerated by these means.
Safety and effectiveness of %medicine_name% in children have not been established.
As individual monotherapy, quinapril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg and hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of quinapril/hydrochlorothiazide combination therapy using quinapril doses of 2.5 to 40 mg and hydrochlorothiazide doses of 6.25 to 25 mg, the antihypertensive effects increased with increasing dose of either component.
The side effects (see WARNINGS) of quinapril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (e.g., pancreatitis), the former much more common than the latter. Therapy with any combination of quinapril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but regimens that combine low doses of hydrochlorothiazide with quinapril produce minimal effects on serum potassium. In clinical trials of %medicine_name%, the average change in serum potassium was near zero in subjects who received HCTZ 6.25 mg in the combination, and the average subject who received 10 to 40/12.5 to 25 mg experienced a milder reduction in serum potassium than that experienced by the average subject receiving the same dose of hydrochlorothiazide monotherapy.
To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy.
Therapy Guided By Clinical EffectPatients whose blood pressures are not adequately controlled with quinapril monotherapy may instead be given %medicine_name% 10/12.5 or 20/12.5. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2 to 3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochlorothiazide, but who experience significant potassium loss with this regimen, may achieve blood pressure control with less electrolyte disturbance if they are switched to %medicine_name% 10/12.5 or 20/12.5.
Replacement TherapyFor convenience, patients who are adequately treated with 20 mg of quinapril and 25 mg of hydrochlorothiazide and experience no significant electrolyte disturbances may instead wish to receive %medicine_name% 20/25.
Use In Renal ImpairmentRegimens of therapy with %medicine_name% need not take account of renal function as long as the patient's creatinine clearance is > 30 mL/min/1.73 m² (serum creatinine roughly ≤ 3 mg/dL or 265 μmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides. Therefore, %medicine_name% is not recommended for use in these patients.
%medicine_name% has been evaluated for safety in 1571 patients in controlled and uncontrolled studies. Of these, 498 were given quinapril plus hydrochlorothiazide for at least 1 year, with 153 patients extending combination therapy for over 2 years. In clinical trials with %medicine_name%, no adverse experience specific to the combination has been observed. Adverse experiences that have occurred have been limited to those that have been previously reported with quinapril or hydrochlorothiazide.
Adverse experiences were usually mild and transient, and there was no relationship between side effects and age, sex, race, or duration of therapy. Discontinuation of therapy because of adverse effects was required in 2.1% in patients in controlled studies. The most common reasons for discontinuation of therapy with %medicine_name% were cough (1.0%; see PRECAUTIONS) and headache (0.7%).
Adverse experiences probably or possibly related to therapy or of unknown relationship to therapy occurring in 1% or more of the 943 patients treated with quinapril plus hydrochlorothiazide in controlled trials are shown below.
Percent of Patients in Controlled Trials | ||
Quinapril/HCTZ N = 943 |
Placebo N = 100 |
|
Headache | 6.7 | 30.0 |
Dizziness | 4.8 | 4.0 |
Coughing | 3.2 | 2.0 |
Fatigue | 2.9 | 3.0 |
Myalgia | 2.4 | 5.0 |
Viral Infection | 1.9 | 4.0 |
Rhinitis | 2.0 | 3.0 |
Nausea and/or Vomiting | 1.8 | 6.0 |
Abdominal Pain | 1.7 | 4.0 |
Back Pain | 1.5 | 2.0 |
Diarrhea | 1.4 | 1.0 |
Upper Respiratory Infection | 1.3 | 4.0 |
Insomnia | 1.2 | 2.0 |
Somnolence | 1.2 | 0.0 |
Bronchitis | 1.2 | 1.0 |
Dyspepsia | 1.2 | 2.0 |
Asthenia | 1.1 | 1.0 |
Pharyngitis | 1.1 | 2.0 |
Vasodilatation | 1.0 | 1.0 |
Vertigo | 1.0 | 2.0 |
Chest Pain | 1.0 | 2.0 |
Clinical adverse experiences probably, possibly, or definitely related or of uncertain relationship to therapy occurring in ≥ 0.5% to < 1.0% (except as noted) of the patients treated with quinapril/HCTZ in controlled and uncontrolled trials (N=1571) and less frequent, clinically significant events seen in clinical trials or postmarketing experience (the rarer events are in italics) include (listed by body system):
BODY AS A WHOLE: Asthenia, Malaise
CARDIOVASCULAR: Palpitation, Tachycardia, Heart Failure, Hyperkalemia, Myocardial Infarction, Cerebrovascular Accident, Hypertensive Crisis, Angina Pectoris, Orthostatic Hypotension, Cardiac Rhythm Disturbance
GASTROINTESTINAL: Mouth or Throat Dry, Gastrointestinal Hemorrhage, Pancreatitis, Abnormal Liver Function Tests
NERVOUS/PSYCHIATRIC: Nervousness, Vertigo, Paresthesia
RESPIRATORY: Sinusitis, Dyspnea
INTEGUMENTARY: Pruritus, Sweating Increased, Erythema Multiforme, Exfoliative Dermatitis, Photosensitivity Reaction, Alopecia, Pemphigus
UROGENITAL SYSTEM: Acute Renal Failure, Impotence
OTHER: Agranulocytosis, Thrombocytopenia, Arthralgia
Angioedema: Angioedema has been reported in 0.1% of patients receiving quinapril (0.1%) (see WARNINGS).
Postmarketing ExperienceThe following serious nonfatal adverse events, regardless of their relationship to quinapril and HCTZ combination tablets, have been reported during extensive postmarketing experience:
BODY AS A WHOLE: Shock, accidental injury, neoplasm, cellulitis, ascites, generalized edema, hernia and anaphylactoid reaction.
CARDIOVASCULAR SYSTEM: Bradycardia, cor pulmonale, vasculitis, and deep thrombosis.
DIGESTIVE SYSTEM: Gastrointestinal carcinoma, cholestatic jaundice, hepatitis, esophagitis, vomiting, and diarrhea.
EYE DISORDERS: Acute myopia and acute angle closure glaucoma (see WARNINGS).
HEMIC SYSTEM: Anemia.
METABOLIC AND NUTRITIONAL DISORDERS: Weight loss.
MUSCULOSKELETAL SYSTEM: Myopathy, myositis, and arthritis.
NERVOUS SYSTEM: Paralysis, hemiplegia, speech disorder, abnormal gait, meningism, and amnesia.
RESPIRATORY SYSTEM: Pneumonia, asthma, respiratory infiltration, and lung disorder.
SKIN AND APPENDAGES: Urticaria, macropapular rash, and petechiases.
SPECIAL SENSES: Abnormal vision.
UROGENITAL SYSTEM: Kidney function abnormal, albuminuria, pyuria, hematuria, and nephrosis.
Quinapril monotherapy has been evaluated for safety in 4960 patients. In clinical trials adverse events which occurred with quinapril were also seen with %medicine_name%. In addition, the following were reported for quinapril at an incidence > 0.5%: depression, back pain, constipation, syncope, and amblyopia.
Hydrochlorothiazide has been extensively prescribed for many years, but there has not been enough systematic collection of data to support an estimate of the frequency of the observed adverse reactions. Within organ-system groups, the reported reactions are listed here in decreasing order of severity, without regard to frequency.
BODY AS A WHOLE: Weakness.
CARDIOVASCULAR: Orthostatic hypotension (may be potentiated by alcohol, barbiturates, or narcotics).
DIGESTIVE: Pancreatitis, jaundice (intrahepatic cholestatic), sialadenitis, vomiting, diarrhea, cramping, nausea, gastric irritation, constipation, and anorexia.
NEUROLOGIC: Vertigo, lightheadedness, transient blurred vision, headache, paresthesia, xanthopsia, weakness, and restlessness.
MUSCULOSKELETAL: Muscle spasm.
HEMATOLOGIC: Aplastic anemia, agranulocytosis, leukopenia, thrombocytopenia, and hemolytic anemia.
RENAL: Renal failure, renal dysfunction, interstitial nephritis (see WARNINGS).
METABOLIC: Hyperglycemia, glycosuria, and hyperuricemia.
HYPERSENSITIVITY: Necrotizing angiitis, Stevens-Johnson syndrome, respiratory distress (including pneumonitis and pulmonary edema), purpura, urticaria, rash, and photosensitivity.
Clinical Laboratory Test Findings Serum Electrolytes:See PRECAUTIONS.
Creatinine, Blood Urea NitrogenIncreases ( > 1.25 times the upper limit of normal) in serum creatinine and blood urea nitrogen were observed in 3% and 4%, respectively, of patients treated with %medicine_name%. Most increases were minor and reversible, which can occur in patients with essential hypertension but most frequently in patients with renal artery stenosis (see PRECAUTIONS).
PBI and Tests of Parathyroid FunctionSee PRECAUTIONS.
HematologySee WARNINGS.
Other (Causal Relationships Unknown)Other clinically important changes in standard laboratory tests were rarely associated with %medicine_name% administration. Elevations in uric acid, glucose, magnesium, cholesterol, triglyceride, and calcium (see PRECAUTIONS) have been reported.
DRUG INTERACTIONS Agents Increasing Serum PotassiumCoadministration of %medicine_name% with other drugs that raise serum potassium levels may result in hyperkalemia. Monitor serum potassium in such patients.
LithiumIncreased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors during therapy with lithium. Because renal clearance of lithium is reduced by thiazides, the risk of lithium toxicity is presumably raised further when, as in therapy with %medicine_name%, a thiazide diuretic is coadministered with the ACE inhibitor. %medicine_name% and lithium should be coadministered with caution, and frequent monitoring of serum lithium levels is recommended.
Dual Blockade Of The Renin-Angiotensin System (RAS)Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on %medicine_name% and other agents that affect the RAS.
Do not co-administer aliskiren with %medicine_name% in patients with diabetes. Avoid concomitant use of aliskiren with %medicine_name% in patients with renal impairment (GFR < 60 mL/min/1.73 m²).
Tetracycline And Other Drugs That Interact With MagnesiumSimultaneous administration of tetracycline with quinapril reduced the absorption of tetracycline by approximately 28% to 37%, possibly due to the high magnesium content in quinapril tablets. This interaction should be considered if coprescribing quinapril and tetracycline or other drugs that interact with magnesium.
GoldNitritoid reactions (symptoms include facial flushing, nausea, vomiting, and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy.
Non-Steroidal Anti-Inflammatory Agents Including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors)In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, co-administration of NSAIDs, including selective COX-2 inhibitors, with ACE inhibitors, including quinapril, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving quinapril and NSAID therapy.
The antihypertensive effect of ACE inhibitors, including quinapril may be attenuated by NSAIDs.
Agents that Inhibit mTORPatients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.
Other AgentsDrug interaction studies of quinapril and other agents showed:
When administered concurrently, the following drugs may interact with thiazide diuretics.